The Michigan Mathematical Journal

A Dirichlet problem for the complex Monge-Ampíre operator in F(f)

Per Åhag

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 55, Issue 1 (2007), 123-138.

Dates
First available in Project Euclid: 27 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1177681988

Digital Object Identifier
doi:10.1307/mmj/1177681988

Mathematical Reviews number (MathSciNet)
MR2320175

Zentralblatt MATH identifier
1152.32020

Subjects
Primary: 32W20: Complex Monge-Ampère operators
Secondary: 32U15: General pluripotential theory

Citation

Åhag, Per. A Dirichlet problem for the complex Monge-Ampíre operator in F ( f ). Michigan Math. J. 55 (2007), no. 1, 123--138. doi:10.1307/mmj/1177681988. https://projecteuclid.org/euclid.mmj/1177681988


Export citation

References

  • P. Å hag, The complex Monge--Ampère operator on bounded hyperconvex domains, Ph.D. Thesis, Umeå Univ., 2002.
  • P. Å hag and R. Czy\D z, The connection between the Cegrell classes and compliant functions, Math. Scand. 99 (2006), 87--98.
  • D. H. Armitage and S. J. Gardiner, Classical potential theory, Springer Monogr. Math., Springer-Verlag, London, 2001.
  • E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge--Ampère equation, Invent. Math. 37 (1976), 1--44.
  • ------, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1--40.
  • Z. Błocki, Estimates for the complex Monge--Ampère operator, Bull. Polish Acad. Sci. Math. 41 (1993), 151--157.
  • ------, On the $L^p$ stability for the complex Monge--Ampère operator, Michigan Math. J. 42 (1995), 269--275.
  • U. Cegrell, Pluricomplex energy, Acta Math. 180 (1998), 187--217.
  • ------, The general definition of the complex Monge--Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159--179.
  • ------, personal communication.
  • U. Cegrell and S. Kołodziej, The equation of complex Monge--Ampère type and stability of solutions, Math. Ann. 334 (2006), 713--729.
  • U. Cegrell, S. Kołodziej, and A. Zeriahi, Subextension of plurisubharmonic functions with weak singularites, Math. Z. 250 (2005), 7--22.
  • U. Cegrell and J. Wiklund, A Monge--Ampère norm for delta-plurisubharmonic functions, Math. Scand. 97 (2005), 201--216.
  • M. Klimek, Pluripotential theory, London Math. Soc. Monogr. (N.S.), 6, Oxford Univ. Press, New York, 1991.
  • S. Kołodziej, The range of the complex Monge--Ampère operator, II, Indiana Univ. Math. J. 44 (1995), 765--782.
  • A. Rashkovskii, personal communication.