The Michigan Mathematical Journal

Surfaces with degenerate CR singularities that are locally polynomially convex

Gautam Bharali

Full-text: Open access

Article information

Michigan Math. J., Volume 53, Issue 2 (2005), 429-445.

First available in Project Euclid: 3 August 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 32E20: Polynomial convexity 46J10: Banach algebras of continuous functions, function algebras [See also 46E25]


Bharali, Gautam. Surfaces with degenerate CR singularities that are locally polynomially convex. Michigan Math. J. 53 (2005), no. 2, 429--445. doi:10.1307/mmj/1123090777.

Export citation


  • E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1--21.
  • F. Forstnerič, Analytic disks with boundaries in a maximal real submanifold of $\Bbb C^2,\!$ Ann. Inst. Fourier (Grenoble) 37 (1987), 1--44.
  • F. Forstnerič and E. L. Stout, A new class of polynomially convex sets, Ark. Mat. 29 (1991), 51--62.
  • R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, NJ, 1965.
  • B. Jöricke, Local polynomial hulls of discs near isolated parabolic points, Indiana Univ. Math. J. 46 (1997), 789--826.
  • E. Kallin, Fat polynomially convex sets, Function algebras (Proc. Internat. Sympos. on Function Algebras, Tulane University, 1965), pp. 149--152, Scott-Foresman, Chicago, 1966.
  • A. G. O'Farrell and K. J. Preskenis, Uniform approximation by polynomials in two functions, Math. Ann. 284 (1989), 529--535.
  • J. Wermer, Approximation on a disk, Math. Ann. 155 (1964), 331--333.
  • J. Wiegerinck, Local polynomially convex hulls at degenerated CR singularities of surfaces in $\Bbb C^2,\!$ Indiana Univ. Math. J. 44 (1995), 897--915.