The Michigan Mathematical Journal

Bounds on the average bending of the convex hull boundary of a Kleinian group

Martin Bridgeman

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 51, Issue 2 (2003), 363-378.

Dates
First available in Project Euclid: 4 August 2003

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1060013202

Digital Object Identifier
doi:10.1307/mmj/1060013202

Mathematical Reviews number (MathSciNet)
MR1992952

Zentralblatt MATH identifier
1065.30041

Subjects
Primary: 51M10: Hyperbolic and elliptic geometries (general) and generalizations 52A55: Spherical and hyperbolic convexity

Citation

Bridgeman, Martin. Bounds on the average bending of the convex hull boundary of a Kleinian group. Michigan Math. J. 51 (2003), no. 2, 363--378. doi:10.1307/mmj/1060013202. https://projecteuclid.org/euclid.mmj/1060013202


Export citation

References

  • A. F. Beardon, The geometry of discrete groups, Grad. Texts in Math., 91, Berlin, Springer-Verlag, 1983.
  • M. Bridgeman, Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132 (1998), 381--391.
  • M. Bridgeman and R. D. Canary, From the boundary of the convex core to the conformal boundary, Geom. Dedicata (to appear); preprint available at $\langle $http://www.math.lsa.umich.edu/$\sim$}canary$\rangle .$
  • ------, Bounding the bending of a hyperbolic 3-manifold, preprint.
  • D. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), pp. 113--253, Cambridge Univ. Press, 1987.
  • D. Epstein, A. Marden, and V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary, preprint.
  • J. L. Harer and R. C. Penner, Combinatorics of train tracks, Ann. of Math. Stud., 125, Princeton Univ. Press, Princeton, NJ, 1992.
  • W. P. Thurston, The geometry and topology of 3-manifolds, lecture notes, Princeton Univ., 1979.
  • ------, Three-dimensional geometry and topology, Princeton Math. Ser., Princeton Univ. Press, Princeton, NJ, 1997.
  • ------, Minimal stretch maps between hyperbolic surfaces, preprint, $\langle $http://front.math.ucdavis.edu/math.GT/9801058$\rangle .$