The Michigan Mathematical Journal

Mobius transformations, the Carathéodory metric, and the objects of complex analysis and potential theory in multiply connected domains

Steven Bell

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 51, Issue 2 (2003), 351-362.

Dates
First available in Project Euclid: 4 August 2003

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1060013201

Digital Object Identifier
doi:10.1307/mmj/1060013201

Mathematical Reviews number (MathSciNet)
MR1992951

Zentralblatt MATH identifier
1039.30003

Subjects
Primary: 30C40: Kernel functions and applications
Secondary: 30C75: Extremal problems for conformal and quasiconformal mappings, other methods

Citation

Bell, Steven. Mobius transformations, the Carathéodory metric, and the objects of complex analysis and potential theory in multiply connected domains. Michigan Math. J. 51 (2003), no. 2, 351--362. doi:10.1307/mmj/1060013201. https://projecteuclid.org/euclid.mmj/1060013201


Export citation

References

  • L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, NJ, 1960.
  • S. Bell, The Szegő projection and the classical objects of potential theory in the plane, Duke Math. J. 64 (1991), 1--26.
  • ------, The Cauchy transform, potential theory, and conformal mapping, CRC Press, Boca Raton, FL, 1992.
  • ------, Complexity of the classical kernel functions of potential theory, Indiana Univ. Math. J. 44 (1995), 1337--1369.
  • ------, Finitely generated function fields and complexity in potential theory in the plane, Duke Math. J. 98 (1999), 187--207.
  • ------, Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping, J. Anal. Math. 78 (1999), 329--344.
  • ------, The fundamental role of the Szegő kernel in potential theory and complex analysis, J. Reine Angew. Math. 525 (2000), 1--16.
  • S. Bergman, The kernel function and conformal mapping, Amer. Math. Soc., Providence, RI, 1950.
  • H. M. Farkas and I. Kra, Riemann surfaces, Springer-Verlag, New York, 1980.