The Michigan Mathematical Journal

Formules de division dans Cn

Emmanuel Mazzilli

Full-text: Open access

Article information

Source
Michigan Math. J., Volume 51, Issue 2 (2003), 251-278.

Dates
First available in Project Euclid: 4 August 2003

Permanent link to this document
https://projecteuclid.org/euclid.mmj/1060013196

Digital Object Identifier
doi:10.1307/mmj/1060013196

Mathematical Reviews number (MathSciNet)
MR1992946

Zentralblatt MATH identifier
1047.32003

Subjects
Primary: 32T25: Finite type domains 32T27: Geometric and analytic invariants on weakly pseudoconvex boundaries 32A60: Zero sets of holomorphic functions
Secondary: 32A26: Integral representations, constructed kernels (e.g. Cauchy, Fantappiè- type kernels) 32A27: Local theory of residues [See also 32C30]

Citation

Mazzilli, Emmanuel. Formules de division dans C n. Michigan Math. J. 51 (2003), no. 2, 251--278. doi:10.1307/mmj/1060013196. https://projecteuclid.org/euclid.mmj/1060013196


Export citation

References

  • M. Andersson and B. Berndtsson, Henkin--Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (1982), 91--110.
  • B. Berndtsson, A formula for interpolation and division in $\Bbb C^n,$ Math. Ann. 263 (1983), 399--419.
  • P. Bonneau, A. Cumenge, and A. Zeriahi, Division dans les espaces de Lipschitz de fonctions holomorphes, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), 517--520.
  • K. Diederich, B. Fischer, and J. E. Fornaess, Hölder estimates on convex domains of finite type, Math. Z. 232 (1999), 43--61.
  • K. Diederich and J. E. Fornaess, Support functions for convex domains of finite type, Math. Z. 230 (1999), 145--164.
  • K. Diederich and E. Mazzilli, Zero varieties for the Nevanlinna class on all convex domains of finite type, Nagoya Math. J. 163 (2001), 215--227.
  • P. Dolbeault, Sur la structure des courants résiduels, Rev. Roumaine Math. Pures Appl. 33 (1988), 31--37.
  • J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529--569.
  • G. M. Henkin and J. Leiterer, Theory of functions on complex manifolds, Akademie-Verlag, Berlin, 1984.
  • J. J. Kohn, Global regularity for $\bar\partial$ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 73 (1973), 273--292.
  • P. Lelong, Fonctions plurisousharmoniques et formes différentielles positives, Gordon & Breach, Paris, 1968.
  • E. Mazzilli, Extension des fonctions holomorphes, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), 837--841.
  • J. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), 108--139.
  • M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75--152.
  • ------, A new division formula for complete intersection, Ann. Polon. Math. 55 (1991), 283--286.
  • M. Range, On Hölder estimates for $\bar\partial u=f$ on weakly pseudoconvexs domains, Several complex variables (Cortona, 1976/1977), pp. 247--267, Scuola Norm. Sup. Pisa, Pisa, 1978.