Missouri Journal of Mathematical Sciences

Strong Forms of $\mu$-Lindelöfness with Respect to Hereditary Classes

Abdo Qahis, Heyam Hussain AlJarrah, and Takashi Noiri

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The aim of this paper is to introduce and study strong forms of $\mu$-Lindelöfness in generalized topological spaces with a hereditary class, called $\mathcal{S} \mu\mathcal{H}$-Lindelöfness and $\mathbf{S}-\mathcal{S}\mu\mathcal{H}$-Lindelöfness. Interesting characterizations of these spaces are presented. Several effects of various types of functions on them are studied.

Article information

Missouri J. Math. Sci., Volume 30, Issue 1 (2018), 20-31.

First available in Project Euclid: 16 August 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 54A05: Topological spaces and generalizations (closure spaces, etc.)
Secondary: 54A08 54D10: Lower separation axioms (T0-T3, etc.)

generalized topology hereditary class $\mu\mathcal{H}$-Lindelöf $\mu$-Lindelöf $\mathcal{S}\mu\mathcal{H}$-Lindelöf $\mathbf{S}-\mathcal{S}\mu\mathcal{H}$-Lindelöf


Qahis, Abdo; AlJarrah, Heyam Hussain; Noiri, Takashi. Strong Forms of $\mu$-Lindelöfness with Respect to Hereditary Classes. Missouri J. Math. Sci. 30 (2018), no. 1, 20--31. doi:10.35834/mjms/1534384949. https://projecteuclid.org/euclid.mjms/1534384949

Export citation


  • Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
  • Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53–66.
  • Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115 (1–2) (2007), 29–36.
  • C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, $\mu$-Compactness with respect to a hereditary class, Bol. Soc. Paran. Mat., 34.2 (2016), 231–236.
  • T. Jyothis and J. Sunil, $\mu$-Compactness in generalized topological spaces, J. Adv. Stud. Top., 3.3 (2012), 18–22.
  • Y. K. Kim and W. K. Min, On operations induced by hereditary classes on generalized topological spaces, Acta Math. Hungar., 137.1–2 (2012), 130–138.
  • K. Kuratowski, Topologies I, Warszawa, 1933.
  • A. Qahis, H. H. Aljarrah, and T. Noiri, $\mu$-Lindelofness in terms of a hereditary class, Missouri J. Math. Sci., 28.1 (2016), 15–24.
  • A. Qahis, New forms of $\mu$-compactness with respect to hereditary classes (submitted).
  • M. Rajamani, V. Inthumathi, and V. Ramesh, Some new generalized topologies via hereditary classes, Bol. Soc. Paran. Mat., 30.2 (2012), 71–77.
  • B. Roy, On a type of generalized open sets, Appl. Gen. Topology, 12 (2011), 163–173.
  • M. S. Sarsak, On $\mu$-compact sets in $\mu$-spaces, Questions Answers General Topology, 31 (2013), 49–57.
  • L. E. D. Saraiva, Generalized quotient topologies, Acta Math. Hungar., 132.1–2 (2011), 168–173.
  • A. M. Zahram, K. El-Saady, and A. Ghareeb, Modification of weak structures via hereditary classes, Appl. Math. Letters., 25 (2012), 869–872.