Missouri Journal of Mathematical Sciences

Strong Forms of $\mu$-Lindelöfness with Respect to Hereditary Classes

Abdo Qahis, Heyam Hussain AlJarrah, and Takashi Noiri

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The aim of this paper is to introduce and study strong forms of $\mu$-Lindelöfness in generalized topological spaces with a hereditary class, called $\mathcal{S} \mu\mathcal{H}$-Lindelöfness and $\mathbf{S}-\mathcal{S}\mu\mathcal{H}$-Lindelöfness. Interesting characterizations of these spaces are presented. Several effects of various types of functions on them are studied.

Article information

Source
Missouri J. Math. Sci., Volume 30, Issue 1 (2018), 20-31.

Dates
First available in Project Euclid: 16 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.mjms/1534384949

Digital Object Identifier
doi:10.35834/mjms/1534384949

Mathematical Reviews number (MathSciNet)
MR3844387

Zentralblatt MATH identifier
06949046

Subjects
Primary: 54A05: Topological spaces and generalizations (closure spaces, etc.)
Secondary: 54A08 54D10: Lower separation axioms (T0-T3, etc.)

Keywords
generalized topology hereditary class $\mu\mathcal{H}$-Lindelöf $\mu$-Lindelöf $\mathcal{S}\mu\mathcal{H}$-Lindelöf $\mathbf{S}-\mathcal{S}\mu\mathcal{H}$-Lindelöf

Citation

Qahis, Abdo; AlJarrah, Heyam Hussain; Noiri, Takashi. Strong Forms of $\mu$-Lindelöfness with Respect to Hereditary Classes. Missouri J. Math. Sci. 30 (2018), no. 1, 20--31. doi:10.35834/mjms/1534384949. https://projecteuclid.org/euclid.mjms/1534384949


Export citation

References

  • Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351–357.
  • Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53–66.
  • Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115 (1–2) (2007), 29–36.
  • C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, $\mu$-Compactness with respect to a hereditary class, Bol. Soc. Paran. Mat., 34.2 (2016), 231–236.
  • T. Jyothis and J. Sunil, $\mu$-Compactness in generalized topological spaces, J. Adv. Stud. Top., 3.3 (2012), 18–22.
  • Y. K. Kim and W. K. Min, On operations induced by hereditary classes on generalized topological spaces, Acta Math. Hungar., 137.1–2 (2012), 130–138.
  • K. Kuratowski, Topologies I, Warszawa, 1933.
  • A. Qahis, H. H. Aljarrah, and T. Noiri, $\mu$-Lindelofness in terms of a hereditary class, Missouri J. Math. Sci., 28.1 (2016), 15–24.
  • A. Qahis, New forms of $\mu$-compactness with respect to hereditary classes (submitted).
  • M. Rajamani, V. Inthumathi, and V. Ramesh, Some new generalized topologies via hereditary classes, Bol. Soc. Paran. Mat., 30.2 (2012), 71–77.
  • B. Roy, On a type of generalized open sets, Appl. Gen. Topology, 12 (2011), 163–173.
  • M. S. Sarsak, On $\mu$-compact sets in $\mu$-spaces, Questions Answers General Topology, 31 (2013), 49–57.
  • L. E. D. Saraiva, Generalized quotient topologies, Acta Math. Hungar., 132.1–2 (2011), 168–173.
  • A. M. Zahram, K. El-Saady, and A. Ghareeb, Modification of weak structures via hereditary classes, Appl. Math. Letters., 25 (2012), 869–872.