Missouri Journal of Mathematical Sciences

Cubic Commutative Ideals of $BCK$-algebras

Tapan Senapati and K. P. Shum

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we apply the concept of cubic set to commutative ideals of $BCK$-algebras, and then characterize their basic properties. We discuss relations among cubic commutative ideals, cubic subalgebras, and cubic ideals of $BCK$-algebras. We provide a condition for a cubic ideal to be a cubic commutative ideal. We define inverse images of cubic commutative ideals and establish how the inverse images of a cubic commutative ideal becomes a cubic commutative ideal. We introduce products of cubic $BCK$-algebras. Finally, we discuss the relationships between (cubic) commutative ideals, implicative ideals, and positive implicative ideals in $BCK/BCI$-algebras.

Article information

Missouri J. Math. Sci., Volume 30, Issue 1 (2018), 5-19.

First available in Project Euclid: 16 August 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 06F35: BCK-algebras, BCI-algebras [See also 03G25]
Secondary: 03G25: Other algebras related to logic [See also 03F45, 06D20, 06E25, 06F35] 94D05: Fuzzy sets and logic (in connection with questions of Section 94) [See also 03B52, 03E72, 28E10]

$BCK$-algebra cubic set cubic subalgebra cubic ideal cubic commutative ideal


Senapati, Tapan; Shum, K. P. Cubic Commutative Ideals of $BCK$-algebras. Missouri J. Math. Sci. 30 (2018), no. 1, 5--19. doi:10.35834/mjms/1534384948. https://projecteuclid.org/euclid.mjms/1534384948

Export citation


  • R. Biswas, Rosenfeld's fuzzy subgroups with interval valued membership function, Fuzzy Sets and Systems, 63.1 (1994), 87–90.
  • C. Jana and T. Senapati, Cubic $G$-subalgebras of $G$-algebras, Ann. Pure App. Math., 10.1 (2015), 105–115.
  • Y. B. Jun, C. S. Kim, and K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform., 4.1 (2012), 83–98.
  • Y. B. Jun, C. S. Kim, and M. S. Kang, Cubic subalgebras and ideals of $BCK/BCI$-algebras, Far East. J. Math. Sci., 44 (2010), 239–250.
  • Y. B. Jun, K. J. Lee, and M. S. Kang, Cubic structures applied to ideals of $BCI$-algebras, Comput. Math. Appl., 62 (2011), 3334–3342.
  • Y. B. Jun, G. Muhiuddin, M. A. Ozturk, and E. H. Roh, Cubic soft ideals in $BCK/BCI$-algebras, J. Comput. Anal. Appl., 22 (2017), 929–940.
  • Y. B. Jun, G. Muhiuddin, and A. M. Al-roqi, Ideal theory of $BCK/BCI$-algebras based on double-framed soft sets, Appl. Math. Inf. Sci., 7 (2013), 1879–1887.
  • J. Meng, Commutative ideals in $BCK$-algebras, Pure Appl. Math., 9 (1991), 49–53.
  • J. Meng, On ideals in $BCK$-algebras, Math. Japon., 40 (1994), 143–154.
  • G. Muhiuddin and A. M. Al-roqi, Cubic soft sets with applications in $BCK/BCI$-algebras, Annals of Fuzzy Mathematics and Informatics, 8 (2014), 291–304.
  • G. Muhiuddin, F. Feng, and Y. B. Jun, Subalgebras of $BCK/BCI$-algebras based on cubic soft sets, The Scientific World Journal, 2014 (2014), Article ID 458638, 9 pages, \tt.
  • G. Muhiuddin and A. M. Al-roqi, Subalgebras of $BCK/BCI$-algebras based on $(\alpha, \beta)$-type fuzzy sets, J. Comput. Anal. Appl., 18.6 (2015), 1057–1064.
  • T. Senapati and K. P. Shum, Cubic implicative ideals of $BCK$-algebras, Missouri J. Math. Sci., 29.2 (2017), 125–138.
  • T. Senapati and K. P. Shum, Cubic positive implicative ideals of $BCK$-algebras, (submitted).
  • T. Senapati and K. P. Shum, Atanassov's intuitionistic fuzzy bi-normed $KU$-subalgebrs of a $KU$-algebra, Missouri J. Math. Sci., 29.1 (2017), 92–112.
  • T. Senapati, C. S. Kim, M. Bhowmik, and M. Pal, Cubic subalgebras and cubic closed ideals of $B$-algebras, Fuzzy Inf. Eng., 7.2 (2015), 129–149.
  • T. Senapati, Cubic $BF$-subalgebras of $BF$-algebras, An. Univ. Oradea Fasc. Mat., 23.1 (2016), 97–105.
  • T. Senapati, Cubic structure of $BG$-subalgebras of $BG$-algebras, J. Fuzzy Math., 24.1 (2016), 151–162.
  • L. A. Zadeh, Fuzzy sets, Inform. and Control, 8.3 (1965), 338–353.
  • L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. I, Inform. Sci., 8 (1975), 199–249.