## Missouri Journal of Mathematical Sciences

- Missouri J. Math. Sci.
- Volume 27, Issue 1 (2015), 71-79.

### Hermite-Hadamard Type Inequalities for the Product of $(\alpha, m)$-Convex Function

Hong-Ping Yin and Feng Qi

#### Abstract

In the paper, the authors establish some Hermite-Hadamard type inequalities for the product of two $(\alpha, m)$-convex functions.

#### Article information

**Source**

Missouri J. Math. Sci., Volume 27, Issue 1 (2015), 71-79.

**Dates**

First available in Project Euclid: 3 December 2015

**Permanent link to this document**

https://projecteuclid.org/euclid.mjms/1449161369

**Digital Object Identifier**

doi:10.35834/mjms/1449161369

**Mathematical Reviews number (MathSciNet)**

MR3431117

**Zentralblatt MATH identifier**

1339.26072

**Subjects**

Primary: 26D15: Inequalities for sums, series and integrals

Secondary: 41A55: Approximate quadratures

**Keywords**

Hermite-Hadamard type inequality $(\alpha, m)$-convex function product Hölder's integral inequality

#### Citation

Yin, Hong-Ping; Qi, Feng. Hermite-Hadamard Type Inequalities for the Product of $(\alpha, m)$-Convex Function. Missouri J. Math. Sci. 27 (2015), no. 1, 71--79. doi:10.35834/mjms/1449161369. https://projecteuclid.org/euclid.mjms/1449161369