Missouri Journal of Mathematical Sciences

Engineers Do It, Scientists Do It, Mathematicians?

Joe Santmyer

Full-text: Open access

Abstract

There is a magnificent mathematical gem missing from most numerical analysis curricula. A literature search of numerical analysis and mathematical modeling texts indicates its absence. What is missing from the numerical analysis toolbox and why isn't it there? The missing tool is the Kalman filter. The Kalman filter requires a modest knowledge of statistics. Is this why it is missing from the toolbox? Read and reach your own conclusion whether this piece of mathematics should be part of a numerical analysis or mathematical modeling curriculum.

Article information

Source
Missouri J. Math. Sci., Volume 26, Issue 2 (2014), 173-188.

Dates
First available in Project Euclid: 18 December 2014

Permanent link to this document
https://projecteuclid.org/euclid.mjms/1418931958

Digital Object Identifier
doi:10.35834/mjms/1418931958

Mathematical Reviews number (MathSciNet)
MR3293814

Zentralblatt MATH identifier
1312.97003

Subjects
Primary: 97N40: Numerical analysis 97N60: Mathematical programming
Secondary: 97R20: Applications in mathematics 97R30: Applications in sciences

Keywords
numerical analysis mathematical modeling real-time processing embedded software

Citation

Santmyer, Joe. Engineers Do It, Scientists Do It, Mathematicians?. Missouri J. Math. Sci. 26 (2014), no. 2, 173--188. doi:10.35834/mjms/1418931958. https://projecteuclid.org/euclid.mjms/1418931958


Export citation

References

  • R. Brown, P. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, New York, 1997.
  • J. Casti, Five More Golden Rules, John Wiley & Sons, New York, 2000.
  • G. Golub and J. Ortega, Scientific Computing an Introduction to Parallel Computing, Academic Press, San Diego, 1993.
  • R. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transactions of the ASME - Journal of Basic Engineering, 82 (Series D), (1960), 35–45.
  • H. Larson, Introduction to Probability Theory and Statistical Inference, John Wiley & Sons, New York, 1969.
  • Matlab, (2013); \tthttp://www.mathworks.com/products/matlab/.
  • P. Maybeck, Stochastic Models, Estimation and Control, Vol. 1, Academic Press, Inc., New York, 1979.
  • I. Miller and M. Miller, Mathematical Statistics with Applications, Prentice Hall, New Jersey, 2004.
  • GNU Octave, (2013); \tt https://www.gnu.org/software/octave/.
  • W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, Cambridge University Press, New York, 1992.
  • D. Simon, Kalman Filtering (2013), \tthttp://www.masys.url.tw/AU/2013SP/OpenCV/0513/kalman-dan-simon.pdf.
  • M. Spetsakis, Computer Vision, (2013), \tthttp://www.cse.yorku.ca/cspeople/faculty/minas/.