Missouri Journal of Mathematical Sciences

Jordan Forms and $n$th Order Linear Recurrences

Thomas McKenzie, Shannon Overbay, and Robert Ray

Full-text: Open access


Let $p$ be a prime number with $p\neq 2$. We consider sequences generated by $n$th order linear recurrence relations over the finite field $Z_p$. In the first part of this paper we generalize some of the ideas in [6] to $n$th order linear recurrences. We then consider the case where the characteristic polynomial of the recurrence has one root in $Z_p$ of multiplicity $n$. In this case, we show that the corresponding recurrence can be generated by a relatively simple matrix.

Article information

Missouri J. Math. Sci., Volume 26, Issue 2 (2014), 122-133.

First available in Project Euclid: 18 December 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11B50: Sequences (mod $m$)

matrix groups linear recurrences over $Z_p$


McKenzie, Thomas; Overbay, Shannon; Ray, Robert. Jordan Forms and $n$th Order Linear Recurrences. Missouri J. Math. Sci. 26 (2014), no. 2, 122--133. doi:10.35834/mjms/1418931954. https://projecteuclid.org/euclid.mjms/1418931954

Export citation


  • M. Artin, Algebra, Prentice Hall, New Jersey, 1991.
  • N. J. Fine, Binomial coefficients modulo a prime, The American Mathematical Monthly, 54.10, Part 1 (1947), 589–592.
  • T. Hungerford, Algebra, Springer, New York, 1974.
  • M. J. Knight and W. A. Webb, Uniform distribution of third order linear recurrence sequences, Acta Arithmetica, 36 (1980), 6–20.
  • R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1986.
  • T. McKenzie, S. Overbay, and R. Ray, $G$-sets and linear recurrences modulo primes, Missouri Journal of Mathematical Sciences, 21.1 (2013), 27–36.
  • H. Niederreiter and J.-S. Shiue, Equidistribution of linear recurring sequences in finite fields, Indagationes Mathematicae, 80 (1977), 397–405.