Missouri Journal of Mathematical Sciences

Hermitian K-Theory of Monoid Rings and the Ring of Integers in a Finite Extension of Q_2

Arwa Abbassi

Full-text: Open access

Abstract

In this work, we give two applications of Karoubi's fundamental theorem of hermitian K-theory. We prove some isomorphisms in L-theory of monoid rings and the ring of integers in a finite extension of $\mathbb{Q}_{2}$.

Article information

Source
Missouri J. Math. Sci., Volume 25, Issue 2 (2013), 177-185.

Dates
First available in Project Euclid: 12 November 2013

Permanent link to this document
https://projecteuclid.org/euclid.mjms/1384266202

Digital Object Identifier
doi:10.35834/mjms/1384266202

Mathematical Reviews number (MathSciNet)
MR3161633

Zentralblatt MATH identifier
1278.19003

Subjects
Primary: 19D50: Computations of higher $K$-theory of rings [See also 13D15, 16E20]

Keywords
hermitian K-theory c-divisible monoid and ring of integers

Citation

Abbassi, Arwa. Hermitian K-Theory of Monoid Rings and the Ring of Integers in a Finite Extension of Q_2. Missouri J. Math. Sci. 25 (2013), no. 2, 177--185. doi:10.35834/mjms/1384266202. https://projecteuclid.org/euclid.mjms/1384266202


Export citation

References

  • J. Gubeladze, Algebraic K-theory of monoid rings, Proceedings of A. Razmadze Mathematical Institute, Georgian Academy of Sciences, Tbilisi, date of publication.
  • M. Karoubi, Périodicité de la K-théorie hermitienne, Lecture Notes in Math, year? 343, 301–411.
  • M. Karoubi, Le théorème fondamental de la K-théorie hermitienne, Annals of Mathematics, 2nd Ser., 112.2 (1980), 259–282.
  • M. Karoubi, Théorie de Quillen et homologie du groupe orthogonal, Ann. of Math., 112 (1980), 207–257.
  • I. A. Panin, On a theorem of Hurewicz and K-theory of complete discrete valuation rings, Math. USSR Izvestiya, 29.1 (1987), xxx–xxx.
  • J. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology, 11 (1972), 349–370.