Institute of Mathematical Statistics Lecture Notes - Monograph Series

From Charged Polymers to Random Walk in Random Scenery

Xia Chen and Davar Khoshnevisan

Full-text: Open access

Abstract

We prove that two seemingly-different models of random walk in random environment are generically quite close to one another. One model comes from statistical physics, and describes the behavior of a randomly-charged random polymer. The other model comes from probability theory, and was originally designed to describe a large family of asymptotically self-similar processes that have stationary increments.

Chapter information

Source
Javier Rojo, ed., Optimality: The Third Erich L. Lehmann Symposium (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2009), 237-251

Dates
First available in Project Euclid: 3 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.lnms/1249305332

Digital Object Identifier
doi:10.1214/09-LNMS5714

Zentralblatt MATH identifier
1271.60106

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60K37: Processes in random environments

Keywords
polymer measures random walk in random scenery

Rights
Copyright © 2009, Institute of Mathematical Statistics

Citation

Rojo, Javier. From Charged Polymers to Random Walk in Random Scenery. Optimality, 237--251, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2009. doi:10.1214/09-LNMS5714. https://projecteuclid.org/euclid.lnms/1249305332


Export citation

References

  • [1] Bolthausen, E. (1989). A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 108–115.
  • [2] Buffet, E. and Pulé, J. V. (1997). A model of continuous polymers with random charges. J. Math. Phys. 38 5143–5152.
  • [3] Chen, X. (2008). Limit laws for the energy of a charged polymer. Ann. Inst. H. Poincaré Probab. Statist. 44 638–672.
  • [4] Chung, K. L. and Fuchs, W. H. J. (1951). On the distribution of values of sums of random variables. Mem. Amer. Math. Soc. 6.
  • [5] Derrida, B., Griffiths, R. B. and Higgs, R. G. (1992). A model of directed walks with random interactions. Europhys. Lett. 18 361–366.
  • [6] Derrida, B. and Higgs, R. G. (1994). Low-temperature properties of directed walks with random self interactions. J. Phys. A 27 5485–5493.
  • [7] Garel, T. and Orland, H. (1988). Mean-field model for protein folding. Europhys. Lett. 6 307–310.
  • [8] Guillotin-Plantard, N. (2004). Sur la convergence faible des systèmes dynamiques échantillonnés. Ann. Inst. Fourier 54 255–278.
  • [9] Kantor, Y. and Kardar, M. (1991). Polymers with self-interactions. Europhys. Lett. 14 421–426.
  • [10] Kesten, H. and Spitzer, F. (1979). A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 5–25.
  • [11] Liapounov, A. M. (1900). Sur une proposition de la théorie des probabilités. Bull. de’l Acad. Impériale des Sci. St. Petérsbourg 13 359–386.
  • [12] Lindeberg, W. (1922). Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechtnung. Math. Z. 15 211–225.
  • [13] Martînez, S. and Petritis, D. (1996). Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 1267–1279.
  • [14] Obukhov, S. P. (1986). Configurational statistics of a disordered polymer chain. J. Phys. A 19 3655–3664.
  • [15] Pólya, G. (1921). Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt in Straßennetz. Math. Ann. 84 149–160.
  • [16] Spitzer, F. (1976). Principles of Random Walks, 2nd ed. Springer, New York–Heidelberg.
  • [17] Wittmer, J., Johner, A. and Joanny, J. F. (1993). Random and alternating polyampholytes. Europhys. Lett. 24 263–268.