Institute of Mathematical Statistics Lecture Notes - Monograph Series

Nonparametric Estimation of Hemodynamic Response Function: A Frequency Domain Approach

Ping Bai, Young Truong, and Xuemei Huang

Full-text: Open access

Abstract

Hemodynamic response function (HRF) has played an important role in many recent functional magnetic resonance imaging (fMRI) based brain studies where the main focus is to investigate the relationship between stimuli and the neural activity. Standard statistical analysis of fMRI data usually calls for a “canonical” model of HRF, but it is uncertain how well this fits the actual HRF. The objective of this paper is to exploit the experimental designs by modeling the stimulus sequences using stochastic point processes. The identification of the stimulus-response relationship will be conducted in the frequency domain, which will be facilitated by fast Fourier transforms (FFT). The usefulness of this approach will be illustrated using both simulated and real human brain data. Under regularity conditions, it is shown that the estimated HRF possesses an asymptotic normal distribution.

Chapter information

Source
Javier Rojo, ed., Optimality: The Third Erich L. Lehmann Symposium (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2009), 190-215

Dates
First available in Project Euclid: 3 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.lnms/1249305330

Digital Object Identifier
doi:10.1214/09-LNMS5712

Mathematical Reviews number (MathSciNet)
MR2681664

Zentralblatt MATH identifier
1271.62061

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
fMRI hemodynamic response function transfer function model point process spectral analysis

Rights
Copyright © 2009, Institute of Mathematical Statistics

Citation

Rojo, Javier. Nonparametric Estimation of Hemodynamic Response Function: A Frequency Domain Approach. Optimality, 190--215, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2009. doi:10.1214/09-LNMS5712. https://projecteuclid.org/euclid.lnms/1249305330


Export citation

References

  • [1] Afifi, A. K. and Bergman, R. A. (1998). Functional Neuroanatomy: Text and Altas. McGraw-Hill, USA.
  • [2] Aguirre, G. K., Zarahn, E. and D’Esposito, M. (1998). The variability of human, BOLD hemodynamic responses. NeuroImage 8 360–369.
  • [3] Alexander, G. E., DeLong, M. R. and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9 357–381.
  • [4] Bénar, C. G., Gross, D. W., Wang, Y., Petre, V., Pike, B., Dubeau, F. and Gotman, J. (2002). The BOLD response to interictal epileptiform discharges. NeuroImage 17 1182–1192.
  • [5] Billingsley, P. (1995). Probability and Measures, 3rd ed. Wiley, New York, USA.
  • [6] Boynton, G. M., Engel, S. A., Glover, G. H. and Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16 4207–4221.
  • [7] Brillinger, D. R. (1974). Cross-spectral analysis of processes with stationary invrements including the stationary G/G/∞ Queue. Ann. Probab. 2 815–827.
  • [8] Brillinger, D. R. (1975). The identification of point process systems. Ann. Probab. 3 909–929.
  • [9] Brillinger, D. R. (1978). A note on the estimation of evoked response. Biological Cybernetics 31 141–144.
  • [10] Brillinger, D. R. (1981). Time Series: Data Analysis and Theory. Holden-Day, San Francisco, CA.
  • [11] Buckner, R. L., Koutstaal, W., Schacter, D. L., Dale, A. M., Rotte, M. and Rosen, B. R. (1998). Functional-anatomic study of episodic retrieval: II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. NeuroImage 7 163–175.
  • [12] Bullmore, E., Brammer, M., Williams, S. C. R., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R. and Sham, P. (1996). Statistical methods of estimation and inference for functional MR image analysis. IEEE Trans. Med. Img. 35 261–277.
  • [13] Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E. and Brammer, M. J. (1999). Statistical methods of estimation and inference for functional MR image analysis. IEEE Trans. Med. Img. 18 32–42.
  • [14] Caulhoun, V. D., Stevens, M. C., Pearlson, G. D. and Kiehl, K. A. (2004). fMRI analysis with the general linear model: Removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. NeuroImage 22 252–257.
  • [15] Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research 29 162–173. Available at http://afni.nimh.nih.gov/afni.
  • [16] Dale, A. M. and Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping 5 329–340.
  • [17] DeLong, M. R., Alexander, G. E., Georgopoulos, A. P., Crutcher, M. D., Mitchell, S. J. and Richardson, R. T. (1984). Role of basal ganglia in limb movements. Hum. Neurobiol. 2 235–244.
  • [18] Duann, J. R., Jung, T. P., Kuo, W. J., Yeh, T. C., Makeig, S., Hsieh, J. C. and Sejnowski, T. J. (1998). Single-trial variability in event-related BOLD signals. NeuroImage 823–835.
  • [19] Fried, I., Katz, A., McCarthy, G., Sass, K. J., Williamson, P., Spencer, S. S. and Spencer, D. D. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci. 11 3656–3666.
  • [20] Friston, K., Holmes, A., Worsley, K., Poline, J. B., Grasby, P., Williams, S., Frackowiak, R. and Turner, R. (1995). Analysis of fMRI time series revisited. NeuroImage 2 45–53.
  • [21] Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E. and Penny, W. D. (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images, Academic Press. Available at http://www.fil.ion.ucl.ac.uk/spm/.
  • [22] Friston, K. J., Frith, C. D., Turner, R. and Frackowiak, R. S. J. (1995). Characterizing evoked hemodynamics with fMRI. NeuroImage 2 157–165.
  • [23] Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D. and Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2 189–210.
  • [24] Friston, K. J., Jezzard, P. and Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping 1 153–171.
  • [25] Friston, K. J., Josephs, O., Rees, G. and Turner, R. (1998). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine 39 41–52.
  • [26] Genovese, C. R. (2000). A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data (with discussion). J. Amer. Statist. Assoc. 95 691–703.
  • [27] Glover, G. H. (1999). Deconvolution of impulse response in event-related fmri. NeuroImage 9 416–429.
  • [28] Gössl, C., Fahrmeir, L. and Auer, D. P. (2001). Bayesian modeling of the hemodynamic response function in BOLD fMRI. NeuroImage 14 140–148.
  • [29] Goutte, C., Nielsen, F. A. and Hansen, L. K. (2000). Modeling the haemodynamic response in fMRI using smooth FIR filters. IEEE Trans. Med. Img. 19 1188–1201.
  • [30] Huettel, S. A., Song, A. W. and McCarthy, G. (2004). Functional Magnetic Resonance Imaging. Sinauer Associates, Inc.
  • [31] Josephs, O., Turner, R. and Friston, K. (1995). Event-related fMRI. Human Brain Mapping 5 243–248.
  • [32] Kang, J. K., Bénar, C. G., Al-Asmi, A., Khani, Y. A., Pike, G. B., Dubeau, F. and Gotman, J. (2003). Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy. NeuroImage 20 1162–1170.
  • [33] Lange, N. and Zeger, S. L. (1997). Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging (with discussion). J. Roy. Statist. Soc. Ser. C 46 1–29.
  • [34] Lindquist, M. and Wager, T. D. (2007). Validity and power in hemodynamic response modeling: A comparison study and a new approach. Human Brain Mapping. Available online.
  • [35] Lindquist, M. and Wager, T. D. (2006). Validity and power in hemodynamic response modeling: A comparison study and a new approach. Human Brain Mapping. DOI: 10.1002/hbm.20310.
  • [36] Maldjian, J. A., Laurienti, P. J. and Burdette, J. H. (2004). Precentral Gyrus discrepancy in electronic versions of the Talairach atlas. NeuroImage 21 450–455.
  • [37] Marchini, J. L. and Ripley, B. D. (2000). A new statistical approach to detecting significant activation in functional MRI. NeuroImage 12 366–380.
  • [38] Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E. and Buckner, R. L. (2000). Characterizing the hemodynamic response: Effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11 735–759.
  • [39] Newton, H. J. (1988). Timeslab: A Time Series Analysis Laboratory. Wadsworth & Brooks/Cole.
  • [40] Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H. and Uğurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. PNAS 89 5951–5955.
  • [41] Rosen, B. R., Buckner, R. L. and Dale, A. M. (1998). Event-related functional MRI: Past, present, and future. Proceedings of the National Academy of Sciences of the United States of America 95 773–780.
  • [42] Schwartz, L. (1966). Mathematics for the Physical Sciences. Hermann.
  • [43] Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M. and Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 208–219. Available at http://www.fmrib.ox.ac.uk/fsl/.
  • [44] Woolrich, M. W., Behrens, T. E. and Smith, S. M. (2004). Constrained linear basis sets for HRF modelling using variational Bayes. NeuroImage 21 1748–1761.
  • [45] Worsley, K. and Friston, K. (1995). Analysis of fMRI time series revisited-again. NeuroImage 2 173–181.
  • [46] Zarahn, E., Aguirre, G. K. and D’Esposito, M. (1997). Empirical analyses of BOLD fMRI statistics. NeuroImage 5 179–197.
  • [47] Zhang, C. M., Jiang, Y. and Yu, T. (2007). A comparative study of one-level and two-level semiparametric estimation of hemodynamic response function for fMRI data. Statist. Med. 26 3845–3861.