Institute of Mathematical Statistics Lecture Notes - Monograph Series

A Functional Generalized Linear Model with Curve Selection in Cervical Pre-cancer Diagnosis Using Fluorescence Spectroscopy

Hongxiao Zhu and Dennis D. Cox

Full-text: Open access


A functional generalized linear model is applied to spectroscopic data to discriminate disease from non-disease in the diagnosis of cervical pre-cancer. For each observation, multiple functional covariates are available, and it is of interest to select a few of them for efficient classification. In addition to multiple functional covariates, some non-functional covariates are also used to account for systematic differences caused by these covariates. Functional principal components are used to reduce the model to multivariate logistic regression and a grouped Lasso penalty is applied to the reduced model to select useful functional covariates among multiple curves.

Chapter information

Javier Rojo, ed., Optimality: The Third Erich L. Lehmann Symposium (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2009), 173-189

First available in Project Euclid: 3 August 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60K37: Processes in random environments

functional generalized linear model curve selection grouped lasso fluorescence spectroscopy cervical cancer

Copyright © 2009, Institute of Mathematical Statistics


Rojo, Javier. A Functional Generalized Linear Model with Curve Selection in Cervical Pre-cancer Diagnosis Using Fluorescence Spectroscopy. Optimality, 173--189, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2009. doi:10.1214/09-LNMS5711.

Export citation


  • [1] Albert, A. and Anderson, J. A. (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71 1–10.
  • [2] Ash, R. B. (1975). Topics in Stochastic Processes. Academic Press, New York.
  • [3] Chang, S. K., Follen, M., Malpica, A., Utzinger, U., Staerkel, G., Cox, D., Atkinson, E. N., MacAulay, C. and Richards-Kortum, R. (2002). Optimal excitation wavelengths for discrimination of cervical neoplasia. IEEE Transactions on Biomedical Engineering 49 1102–1110.
  • [4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348–1360.
  • [5] Ferré, L. and Villa, N. (2006). Multilayer perceptron with functional inputs: An Inverse Regression Approach. Scand. J. Statist. 33 807–823.
  • [6] Hall, P., Poskitt, D. S. and Presnell, B. (2001). A Functional data-analytic approach to signal discrimination. Technometrics 43 157–214.
  • [7] Hall, P., Müller, H. and Wang, J. (2006). Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 1493–1517.
  • [8] James, G. M. (2002). Generalized linear models with functional predictors. J. Roy. Statist. Soc. Ser. B 64 411–432.
  • [9] Leng, X. and Müller, H. (2005). Classification using functional data analysis for temporal gene expression data. Bioinformatics 22 68–76.
  • [10] Meier, L., Geer, S. and Bühlmann, P. (2008). The group Lasso for logistic regression. J. Roy. Statist. Soc. Ser. B 70 53–71.
  • [11] Müller, H. and Stadtmüller, U. (2005). Generalized functional linear models. Ann. Statist. 33 774–805.
  • [12] Ramanujam, N., Mitchell, M. F., Mahadevan, A., Thomsen, S., Malpica, A., Wright, T., Atkinson, N. and Richards-Kortum, R. (1996). Spectorscopic diagnosis of cervical intraepithelial neoplasia(CIN) in vivo using laser induced fluorescence spectra at multiple excitation wavelengths. Lasers Surg. Med. 19 63–67.
  • [13] Ramsay, J. and Silverman, B. (1997). Functional Data Analysis. Springer, New York.
  • [14] Ratcliffe, S. J., Heller, G. Z. and Leader, L. R. (2002). Functional data analysis with application to periodically stimulated foetal heart rate data. II: Functional logistic regression. Statist. Med. 21 1115–1127.
  • [15] Rockafellar, R. T. (1970). Convex Analysis. Princeton Univ. Press.
  • [16] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267–288.
  • [17] Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 92 937–950.
  • [18] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. Roy. Statist. Soc. Ser. B 68 49–67.
  • [19] Zhao, X., Marron, J. S. and Wells, M. T. (2004). The functional data analysis view of longitudinal data. Statist. Sinica 4 789–808.
  • [20] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541–2563.
  • [21] Zhou, X. and Obuchowski, N. A. (2002). Statistical Methods in Diagnostic Medicine. Wiley, New York.
  • [22] Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418–1429.
  • [23] Zweig, M. H. and Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry 39 561–577.