Institute of Mathematical Statistics Lecture Notes - Monograph Series

On the Non-Optimality of Optimal Procedures

Peter J. Huber

Full-text: Open access


This paper discusses some subtle, and largely overlooked, differences between conceptual and mathematical optimization goals in statistics, and illustrates them by examples.

Chapter information

Javier Rojo, ed., Optimality: The Third Erich L. Lehmann Symposium (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2009), 31-46

First available in Project Euclid: 3 August 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

optimality superefficiency optimal robustness breakdown point optimal design Bayesian robustness

Copyright © 2009, Institute of Mathematical Statistics


Rojo, Javier. On the Non-Optimality of Optimal Procedures. Optimality, 31--46, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2009. doi:10.1214/09-LNMS5705.

Export citation


  • [1] Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika 40 318–335.
  • [2] Box, G. E. P. and Draper, N. R. (1959). A basis for the selection of a response surface design. J. Amer. Statist. Assoc. 54 622–654.
  • [3] Clausewitz, C. von (1832). Vom Kriege, 19th ed. (1991). Dümmler Verlag, Bonn.
  • [4] Clausewitz, C. von (1984). On War. Edited and translated by M. Howard and P. Paret. Princeton Univ. Press, Princeton, NJ.
  • [5] Davies, P. L. (1993). Aspects of robust linear regression. Ann. Statist. 21 1843–1899.
  • [6] Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich L. Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges eds.). Wadsworth, Belmont, CA.
  • [7] Eddington, A. S. (1914). Stellar Movements and the Structure of the Universe. Macmillan, London.
  • [8] Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error and the mean square error. Monthly Not. Roy. Astron. Soc. 80 758–770.
  • [9] Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics. Philos. Trans. Roy. Soc. London, Ser. A 222 309–368.
  • [10] Freedman, D. A. (1963). On the asymptotic behavior of Bayes’ estimates in the discrete case. Ann. Math. Statist. 34 1386–1403.
  • [11] Freedman, D. A. (2006). On the so-called “Huber Sandwich Estimator” and “Robust Standard Errors”. Amer. Statist. 60 209–302.
  • [12] Hampel, F. R. (1968). Contributions to the theory of robust estimation. Ph.D. thesis. Univ. California, Berkeley.
  • [13] Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 62 1179–1186.
  • [14] Hampel, F. R. (1975), Beyond location parameters: Robust concepts and methods. Proc. 40th Session I. S. I., Warsaw 1975. Bull. Int. Statist. Inst. 46 375–382.
  • [15] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics. The Approach Based on Influence. Wiley, New York.
  • [16] Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73–101.
  • [17] Huber, P. J. (1965). A robust version of the probability ratio test. Ann. Math. Statist. 36 1753–1758.
  • [18] Huber, P. J. (1966). Strict efficiency excludes superefficiency, (Abstract). Ann. Math. Statist. 37 1425.
  • [19] Huber, P. J. (1968). Robust confidence limits. Z. Wahrsch. Verw. Gebiete 10 269–278.
  • [20] Huber, P. J. (1972). Robust statistics: A review. Ann. Math. Statist. 43 1041–1067.
  • [21] Huber, P. J. (1975a). Robustness and designs. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.). North Holland, Amsterdam.
  • [22] Huber, P. J. (1975b). Application vs. abstraction: The selling out of mathematical statistics. Suppl. Adv. Appl. Prob. 7 84–89.
  • [23] Huber, P. J. (2009). Robust Statistics, 2nd ed. Wiley, New York.
  • [24] Huber-Carol, C. (1970). Etude asymptotique de tests robustes. Ph.D. thesis. Eidgen, Technische Hochschule, Zürich.
  • [25] James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc. Fourth Berkeley Symp. Math. Statist. Prob. I 311–319.
  • [26] Kiefer, J. (1959). Optimum experimental designs. J. Roy. Statist. Soc. Ser. B 21 272–319.
  • [27] Launer, R. L. and Wilkinson, G. N. (Eds.) (1979). Proc. ARO Workshop on Robustness in Statistics, April 11–12, 1978. Academic Press, New York.
  • [28] LeCam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes’ estimates. Univ. Calif. Publ. Statist. 1 277–330.
  • [29] LeCam, L. (1957). Locally asymptotically normal families of distributions. Univ. Calif. Publ. Statist. 3 37–98.
  • [30] Lehmann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.
  • [31] Lehmann, E. L. (1983). Theory of Point Estimation. Wiley, New York.
  • [32] Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. London, Ser. A 231 289–337.
  • [33] Rieder, H. (1994). Robust Asymptotic Statistics. Springer, Berlin.
  • [34] Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880.
  • [35] Rousseeuw, P. J. and Yohai, V. J. (1984). Robust regression by means of S-Estimators. In Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle and R. D. Martin, eds.). Lecture Notes in Statistics 26. Springer, New York.
  • [36] Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In Contributions to Probability and Statistics (I. Olkin, ed.). Stanford Univ. Press, Stanford, CA.
  • [37] Tukey, J. W. (1962). The future of data analysis. Ann. Math. Statist. 33 1–67.
  • [38] Wald, A. (1950). Statistical Decision Functions. Wiley, New York.
  • [39] Whitehead, A. N. and Russell, B. (1910–13). Principia Mathematica 3. Cambridge Univ. Press.
  • [40] Wolpert, R. L. (2004). A conversation with James O. Berger. Statist. Sci. 19 205–218.