Institute of Mathematical Statistics Lecture Notes - Monograph Series

Zeroes of infinitely differentiable characteristic functions

Herman Rubin and Thomas M. Sellke

Full-text: Open access

Abstract

We characterize the sets where an n-dimensional, infinitely differentiable characteristic function can have its real part zero, positive, and negative, and where it can have its imaginary part zero, positive, and negative.

Chapter information

Source
Anirban DasGupta, ed., A Festschrift for Herman Rubin (Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2004), 164-170

Dates
First available in Project Euclid: 28 November 2007

Permanent link to this document
https://projecteuclid.org/euclid.lnms/1196285388

Digital Object Identifier
doi:10.1214/lnms/1196285388

Mathematical Reviews number (MathSciNet)
MR2126895

Zentralblatt MATH identifier
1268.60019

Subjects
Primary: 60E10: Characteristic functions; other transforms

Keywords
characteristic functions zeroes

Rights
Copyright © 2004, Institute of Mathematical Statistics

Citation

Rubin, Herman; Sellke, Thomas M. Zeroes of infinitely differentiable characteristic functions. A Festschrift for Herman Rubin, 164--170, Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2004. doi:10.1214/lnms/1196285388. https://projecteuclid.org/euclid.lnms/1196285388


Export citation