Kodai Mathematical Journal

Schatten class Toeplitz operators on the parabolic Bergman space II

Masaharu Nishio, Noriaki Suzuki, and Masahiro Yamada

Full-text: Open access


Let 0 < α ≤ 1 and let $\boldsymbol{b}_\alpha^{2}$ be a Hilbert space of all square integrable solutions of a parabolic equation (∂t + (−Δ)α)u = 0 on the upper half space. We study the Toeplitz operators on $\boldsymbol{b}_\alpha^{2}$, which we characterize to be of Schatten class whose exponent is smaller than 1. For the proof, we use an atomic decomposition theorem of parabolic Bergman functions. Generalizations to Schatten class operators for Orlicz type and Herz type are also discussed.

Article information

Kodai Math. J., Volume 35, Number 1 (2012), 52-77.

First available in Project Euclid: 29 March 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Nishio, Masaharu; Suzuki, Noriaki; Yamada, Masahiro. Schatten class Toeplitz operators on the parabolic Bergman space II. Kodai Math. J. 35 (2012), no. 1, 52--77. doi:10.2996/kmj/1333027254. https://projecteuclid.org/euclid.kmj/1333027254

Export citation