Kodai Mathematical Journal

Bounds on fake weighted projective space

Alexander M. Kasprzyk

Full-text: Open access

Abstract

A fake weighted projective space X is a Q-factorial toric variety with Picard number one. As with weighted projective space, X comes equipped with a set of weights (λ0, ..., λn). We see how the singularities of P0, ..., λn) influence the singularities of X, and how the weights bound the number of possible fake weighted projective spaces for a fixed dimension. Finally, we present an upper bound on the ratios λj/Σλi if we wish X to have only terminal (or canonical) singularities.

Article information

Source
Kodai Math. J., Volume 32, Number 2 (2009), 197-208.

Dates
First available in Project Euclid: 26 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1245982903

Digital Object Identifier
doi:10.2996/kmj/1245982903

Mathematical Reviews number (MathSciNet)
MR2549542

Zentralblatt MATH identifier
1216.14047

Citation

Kasprzyk, Alexander M. Bounds on fake weighted projective space. Kodai Math. J. 32 (2009), no. 2, 197--208. doi:10.2996/kmj/1245982903. https://projecteuclid.org/euclid.kmj/1245982903


Export citation