Kodai Mathematical Journal

The finiteness of co-associated primes of local homology modules

Tran Tuan Nam

Full-text: Open access

Abstract

Let M be a semi-discrete linearly compact module over a commutative noetherian ring R and i a non-negative integer. We show that the set of co-associated primes of the local homology R-module $H^I_i$(M) is finite in either of the following cases: (i) The R-modules $H^I_i$(M) are finite for all j < i; (ii) I ⊆ Rad (AnnR($H^I_i$(M))) for all j < i. By Matlis duality we extend some results for the finiteness of associated primes of local cohomology modules $H^I_i$(M).

Article information

Source
Kodai Math. J., Volume 29, Number 3 (2006), 383-390.

Dates
First available in Project Euclid: 2 November 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1162478769

Digital Object Identifier
doi:10.2996/kmj/1162478769

Mathematical Reviews number (MathSciNet)
MR2278773

Zentralblatt MATH identifier
1136.13010

Citation

Nam, Tran Tuan. The finiteness of co-associated primes of local homology modules. Kodai Math. J. 29 (2006), no. 3, 383--390. doi:10.2996/kmj/1162478769. https://projecteuclid.org/euclid.kmj/1162478769


Export citation