Kodai Mathematical Seminar Reports

On automorphism groups of quaternion Kähler manifolds

Yoshiya Takemura

Full-text: Open access

Article information

Source
Kodai Math. Sem. Rep., Volume 27, Number 3 (1976), 353-361.

Dates
First available in Project Euclid: 1 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138847261

Digital Object Identifier
doi:10.2996/kmj/1138847261

Mathematical Reviews number (MathSciNet)
MR0405309

Zentralblatt MATH identifier
0364.53028

Subjects
Primary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]

Citation

Takemura, Yoshiya. On automorphism groups of quaternion Kähler manifolds. Kodai Math. Sem. Rep. 27 (1976), no. 3, 353--361. doi:10.2996/kmj/1138847261. https://projecteuclid.org/euclid.kmj/1138847261


Export citation

References

  • [1] D. V. ALEKSEEVSKI, Riemannian spaces with exceptional holonomy groups, Funktisional' nyi Analiz i Ego Prilozhenyia, 2 (1968), 1-10.
  • [2] D. V. ALEKSEEVSKI, Compact quaternion spaces, Funktsional' nyi Analiz i Eg ^ Prilozhenyia, 2 (1968), 11-20.
  • [3] E. CARTAN, Sur la structure de groupes de transformations finis et continue, These, Paris, 1894
  • [4] A. GRAY, A note on manifolds whose holonomy group is a subgroup o S?(m) Si), Michigan Math. J., 16 (1969), 125-128.
  • [5] S. ISHIHARA, Groups of Isometries of Pseudo-Hermitian Spaces, I, II Proc Japan Acad., 30, 940-945 (1954), 31, 418-420 (1955).
  • [6] S. ISHIHARA, Notes on Quaternion Kahler manifolds, To appear in Journ. o Diff. Geom.
  • [7] S. ISHIHARA, Quaternion Kahler manifolds and fibred Riemannian spaces wit Sasakian 3-structure, Kdai Math. Sem. Rep., 25 (1973), 321-329.
  • [8] S. ISHIHARA AND M. KoNisHi, Fibred Riemannian spaces with Sasakian 3-struc ture, Differential Geometry in honor of K. Yano, Kinokuniya, Tokyo, (1972), 172-194.
  • [9] V. Y. KRAINS, Topology of quaternionic manifolds, Trans. Amer. Math. Soc., 122 (1966), 357-367
  • [10] H. WAKAKUWA, Holonomy Groups, Publ. G. G. 6
  • [11] H. C. WANG, Finsler spaces with completely ntegrable equations of Killing, J. London Math. Soc., 22 (1947), 5-9
  • [12] J. A. WOLF, Complex homogeneous contact manifolds and quaternionic sym metric spaces, J. Math. Mech., 14 (1963), 1033-1047.
  • [13] K. YANO, The theory of Lie derivatives and its applications, North-Holland, Amsterdam (1957)