Kodai Mathematical Seminar Reports

Riemannian manifolds admitting an infinitesimal conformal transformation

Kentaro Yano and Sumio Sawaki

Full-text: Open access

Article information

Source
Kodai Math. Sem. Rep., Volume 22, Number 3 (1970), 272-300.

Dates
First available in Project Euclid: 1 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138846164

Digital Object Identifier
doi:10.2996/kmj/1138846164

Mathematical Reviews number (MathSciNet)
MR0267489

Zentralblatt MATH identifier
0216.43802

Subjects
Primary: 53.72

Citation

Yano, Kentaro; Sawaki, Sumio. Riemannian manifolds admitting an infinitesimal conformal transformation. Kodai Math. Sem. Rep. 22 (1970), no. 3, 272--300. doi:10.2996/kmj/1138846164. https://projecteuclid.org/euclid.kmj/1138846164


Export citation

References

  • [1] GOLDBERG, S. I., Manifolds admitting a one-parameter group of conformal transfor-mations. Michigan Math. J. 15 (1968), 339-344.
  • [2] GOLDBERG, S. I., AND S. KOBAYASHI, The conformal transformation group of compact Riemannian manifold. Amer. J. Math. 84 (1962), 170-174.
  • [3] HSIUNG, C. C., On the group of conformal transformations of a compact Riemannia manifold. Proc. Nat. Acad. Sci. U. S. A. 54 (1965), 1509-1513.
  • [4] ISHIHARA, S., On infinitesimal concircular transformations. Kdai Math. Sem Rep. 12 (1960), 45-56.
  • [5] ISHIHARA, S., AND Y. TASHIRO, On Riemannian manifolds admitting a concircula transformation. Math. J. Okayama Univ. 9 (1959), 19-47.
  • [6] LICHNEROWICZ, A., Sur les transformations conformes d'une variete nemannienn compacte. C. R. Acad. Sci. Pans 259 (1964), 697-700.
  • [7] OBATA, M., Certain conditions for a Riemannian manifold to be isometric wit a sphere. J. Math. Soc. Japan 14 (1962), 333-340.
  • [8] OBATA, M., Conformal transformations in Riemannian manifolds (in Japanese) SQgaku, Math. Soc. Japan 14 (1963), 152-164.
  • [9] OBATA, M., Riemannian manifolds admitting a solution of a certain system o differential equations. Proc, U. S. -Japan Seminarin Differential Geometry, Kyoto, Japan (1965), 101-114.
  • [10] OBATA, M., Quelques megalites integrates sur une variete nemannienne compacte C. R. Acad. Sci. Pans 264 (1967), 123-125.
  • [11] TASHIRO, Y\, Complete Riemannian manifolds and some vector ields. Trans Amer. Math. Soc. 117 (1965), 251-275.
  • [12] WEBER, W. C., AND S. I. GOLDBERG, Conformal deformations of Riemannia manifolds. Queen's Papers on Pure and Applied Mathematics, Queen's Uni-versity, Kingston, Canada (1969).
  • [13] YANO, K., On harmonic and Killing vector fields. Annals of Math. 55 (1952), 38-45
  • [14] YANO, K., The theory of Lie derivatives and its applications. North Hollan Publ. Co., Amsterdam (1957).
  • [15] YANO, K., On Riemannian manifolds with constant scalar curvature admittin a one-parameter conformal transformation group. Proc. Nat. Acad. Sci. U. S. A. 55 (1966), 472-476.
  • [16] YANO, K., Riemannian manifolds admitting a conformal transformation group Proc. Nat. Acad. Sci. U. S. A. 62 (1969), 314-319.
  • [17] YANO, K., On Riemannian manifolds admitting an infinitesimal conformal trans formation. Math. Zeitschr. 113 (1970), 205-214.
  • [18] YANO, K., AND T. NAGANO, Einstein spaces admitting a one-parameter group o conformal transformations. Annals of Math. 69 (1959), 451-461.
  • [19] YANO, K., AND M. OBATA, Sur le groupe de transformations conformes dans un variete de Riemann dont le scalaire de courbure est constant. C. R. Acad. Sci. Paris 260 (1965), 2698-2700.
  • [20] YANO, K., AND S. SAWAKI, On Riemannian manifolds admitting a conforma transformation group. J. of Diff. Geom. 2 (1968), 161-184.