Kodai Mathematical Journal

Ehresmann connections for a foliated manifold and certain kinds of rectangles without terminal vertex

Naoyuki Koike

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 22, Number 3 (1999), 402-423.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138044093

Digital Object Identifier
doi:10.2996/kmj/1138044093

Mathematical Reviews number (MathSciNet)
MR1727301

Zentralblatt MATH identifier
0979.57012

Subjects
Primary: 53C12: Foliations (differential geometric aspects) [See also 57R30, 57R32]
Secondary: 53C05: Connections, general theory 57R30: Foliations; geometric theory

Citation

Koike, Naoyuki. Ehresmann connections for a foliated manifold and certain kinds of rectangles without terminal vertex. Kodai Math. J. 22 (1999), no. 3, 402--423. doi:10.2996/kmj/1138044093. https://projecteuclid.org/euclid.kmj/1138044093


Export citation

References

  • [1] R. A. BLUMENTHAL AND J. J. HEBDA, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Founer (Grenoble), 33 (1983), 183-198.
  • [2] R. A. BLUMENTHAL AND J. J. HEBDA, Ehresmann connection for foliations, Indiana Univ Math. J., 33 (1984), 597-612.
  • [3] R. A. BLUMENTHAL AND J. J. HEBDA, Complementary distributions which preserve the lea geometry and applications to totally geodesic folations, Quart. J. Math. Oxford Ser. (2), 35 (1984), 383-392.
  • [4] R. A. BLUMENTHAL AND J. J. HEBDA, An analogue of the holonomy bundle for a foliate manifold, Tohoku Math. J., 40 (1988), 189-197
  • [5] R. BOTT, Lectures on characteristic classes and foliations, Lecture Notes in Math, 279, Springer-Verlag, 1972, 1-80
  • [6] G. CAIRNS, Totally umbilic Riemannian foliations, Michigan Math. J., 37 (1990), 145-159
  • [7] C. EHRESMANN, Les connexions infinitesimales dans un espace fibre differentiate, Colloque d Topologie, Bruxelles, 1950, Georges Thone, Liege; Masson et Cie., Pans, 1951, 29-55.
  • [8] R. HERMANN, On the differential geometry of foliations, Ann. of Math., 72 (1960), 445-45
  • [9] D. L. JOHNSON AND L. B. WHTT, Totally geodesic foliations, J. Differential Geom., 1 (1980), 225-235.
  • [10] N. KOIKE, Totally umbilic foliations and decomposition theorems, Saitama Math. J., (1990), 1-18.
  • [11] N. KOIKE, Foliations on a Riemannian manifold and Ehresmann connections, Indiana Univ Math. J., 40 (1991), 277-292.
  • [12] N. KOIKE, Totally umbilic orthogonal nets and decomposition theorems, Saitama Math. J., 10 (1992), 1-19
  • [13] N. KOIKE, Ehresmann connections for a foliation on a manifold with boundary, SUT J. Math., 30 (1994), 147-158
  • [14] P. MOLINO, Riemannian Foliations, Progress in Math., 73, Birkhauser, 1988
  • [15] B. REINHART, Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119-132.
  • [16] V. ROVENSKII, Foliations on Riemannian Manifolds and Submanifolds, Birkhauser, Boston, 1998