Kodai Mathematical Journal

Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries

Nariya Kawazumi and Takeshi Uemura

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 21, Number 3 (1998), 372-380.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138043946

Digital Object Identifier
doi:10.2996/kmj/1138043946

Mathematical Reviews number (MathSciNet)
MR1664755

Zentralblatt MATH identifier
0924.57031

Subjects
Primary: 57M60: Group actions in low dimensions
Secondary: 14H15: Families, moduli (analytic) [See also 30F10, 32G15] 20J06: Cohomology of groups 57R20: Characteristic classes and numbers

Citation

Kawazumi, Nariya; Uemura, Takeshi. Riemann-Hurwitz formula for Morita-Mumford classes and surface symmetries. Kodai Math. J. 21 (1998), no. 3, 372--380. doi:10.2996/kmj/1138043946. https://projecteuclid.org/euclid.kmj/1138043946


Export citation

References

  • [AC] E. ARBARELLO AND M. CORNALBA, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, preprint.
  • [A] M. F ATIYAH, The signature of fibre-bundles, Global Analysis (Papers in honor o K. Kodaira), University of Tokyo Press, Tokyo, 1969, 73-84.
  • [BC] D. J. BENSON ANDF R. COHEN, Mapping class groups of low genus and their coho mology, Mem. Amer. Math. Soc, 443 (1991).
  • [B] K. S. BROWN, Cohomology of Groups, Springer, New York-Heidelberg-Berlin, 1982
  • [CC] R. M. CHARNEY AND F R. COHEN, A stable splitting for the mapping class group, Michigan Math. J., 35 (1988), 269-284
  • [CL] R. M. CHARNEY AND R. LEE, An application of homotopy theory to mapping clas groups, J. Pure Appl. Algebra, 44 (1987), 127-135.
  • [GM] H. GLOVER AND G. MISLIN, Torsion in the mapping class group and its cohomology, J. Pure Appl. Algebra, 44 (1987), 177-189
  • [HI] J. HARER, Stability of the homology of the mapping class group of oentable surfaces, Ann. of Math., 121 (1985), 215-249
  • [H2] J. HARER, The second homology group of the mapping class group of an oentable surface, Invent. Math., 72 (1983), 221-239
  • [H3] J. HARER, The third homology group of the moduli of curves, Duke Math. J., 65 (1991), 25-55
  • [Hi] F. HIRZEBRUCH, The signature of ramified coverings, Global Analysis (Papers in honor o K. Kodaira), University of Tokyo Press, Tokyo, 1969, 253-265.
  • [1] T. IZAWA, Chern number formula for ramified coverings, Master Thesis, Hokkaid University, 1997 A summary is in: Srikaisekikenkysho Kkyroku, 1033 (1998), 7-20.
  • [Ka] N. KAWAZUMI, Homology of hyperelliptic mapping class groups for surfaces, Topolog Appl., 76 (1997), 203-216.
  • [KM] N. KAWAZUMI AND S. MORITA, The primary approximation to the cohomology of th moduli space of curves and cocycles for the stable cohomology classes, Math. Res. Lett., 3 (1996), 629-641.
  • [Ke] S. P KERCKHOFF, The Nielsen realization problem, Ann. of Math., 117 (1983), 235 265.
  • [Ko] K. KODAIRA, A certain type of irregular algebraic surface, J. Anal. Math., 19 (1967), 207 215.
  • [Mi] E. Y MILLER, The homology of the mapping class group, J. Differential Geom., 24 (1986), 1-14
  • [Mf ] T. MORIFUJI, The ^/-invariant of mapping ton with finite monodromies, Topology Appl., 7 (1997), 41-49.
  • [Mol] S. MORITA, Characteristic classes of surface bundles, Invent. Math., 90 (1987), 551-57
  • [Mo2] S. MORITA, Families of Jacobian manifolds and characteristic classes of surface bundles, I, Ann. Inst. Fourier (Grenoble), 39 (1989), 777-810
  • [Mo3] S. MORITA, Families of Jacobian manifolds and characteristic classes of surface bundles, II, Math. Proc. Cambridge Philos. Soc, 105 (1989), 79-101
  • [Mo4] S. MORITA, The extension of Johnson's homomorphism from the Torelli group to th mapping class group, Invent. Math., III (1993), 197-224.
  • [Mu] D. MUMFORD, Towards an enumerative geometry of the moduli space of curves, Arithmeti and Geometry. Prog. Math., 36, Birkhauser, Boston, 1983, 271-328.
  • [T] U. TILLMANN, A splitting for the stable mapping class group, Math. Proc. Cambridg Philos. Soc, to appear.
  • [XI] Y. XIA, The /?-torsion of the Farrell-Tate cohomology of the mapping class group (/, _1)/2, Topology '90, Ohio State Univ. Math. Res. Inst. Publ., 1, Walter de Gruyter, Berlin, 1992, 391-398
  • [X2] Y. XIA, The p-torsion of the Farrell-Tate cohomology of the mapping class group p_\, Pure Appl. Algebra, 78 (1992), 319-334