Kodai Mathematical Journal

On the Goldbach problem in algebraic number fields and the positivity of the singular integral

Takumi Noda

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 20, Number 1 (1997), 8-21.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138043716

Digital Object Identifier
doi:10.2996/kmj/1138043716

Mathematical Reviews number (MathSciNet)
MR1443361

Zentralblatt MATH identifier
0879.11055

Subjects
Primary: 11R47: Other analytic theory [See also 11Nxx]
Secondary: 11P32: Goldbach-type theorems; other additive questions involving primes 11P55: Applications of the Hardy-Littlewood method [See also 11D85]

Citation

Noda, Takumi. On the Goldbach problem in algebraic number fields and the positivity of the singular integral. Kodai Math. J. 20 (1997), no. 1, 8--21. doi:10.2996/kmj/1138043716. https://projecteuclid.org/euclid.kmj/1138043716


Export citation

References

  • [1] O. KORNER, Erweiterter Goldbach-Vinogradovscher Satz in beliebigen algebraischen Zahlkorpern, Math. Ann., 143 (1961), 344-378.
  • [2] O. KORNER, Zur additiven Primzahltheorie algebraischer Zahlkorper, Math. Ann., 144 (1961), 97-109
  • [3] T. MITSUI, Generalized prime number theorem, Japan J. Math., 26 (1956), 1-42
  • [4] T. MITSUI, On the Goldbach problem in an algebraic number field I, II, J. Math. Soc. Japan, 12 (1960), 209-324, 325-372
  • [5] T. MITSUI, Analytic number theory, Iwanami, 1989 (in Japanese)
  • [6] H. RADEMACHER, Uber eine Erweiterung des Goldachschen Problems, Math. Z., 25 (1926), 627-657
  • [7] H. RADEMACHER, Zur additiven Primzahltheorie algebraischer Zahlkrper III, Uber di Darstellung totalpositiver Zahlen als Summen von totalpositiven Primzahlen in einem belie-bigen Zahlkrper, Math. Z., 27 (1928), 321-426.
  • [8] C. L. SIEGEL, Generalization of Waring's problem to algebraic number fields, Amer. J. Math., 66 (1944), 122-136
  • [9] C. L. SIEGEL, Sums of m-th powers of algebraic integers, Ann. of Math., 46 (1945), 313-339
  • [10] A. A. SULTANOVA, The Vinogradov-Goldbach theorem with restrictions on the terms, Izv Akad. Nauk- USSR, no. 4 (1989), 37-39 (in Russian).
  • [11] R. C. VAUGHAN, The Hardy-Littlewood Method, Tracts in Math, 80, Cambridge Univ. Press, 1981
  • [12] I. M. VINOGRADOV, Representation of an odd number as a sum of three primes, Dokl. Akad Nauk SSSR, 15 (1937), 169-172.
  • [13] I. M. VINOGRADOV, Some theorems concerning the theory of primes, Mat. Sb., 2 (1937), 9 195.
  • [14] Y. WANG, Diophantine Equations and Inequalities in Algebraic number Fields, Springer, 1991