Kodai Mathematical Journal

Group actions and deformations for harmonic maps into symmetric spaces

Yoshihiro Ohnita

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 17, Number 3 (1994), 463-475.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138040041

Digital Object Identifier
doi:10.2996/kmj/1138040041

Mathematical Reviews number (MathSciNet)
MR1296917

Zentralblatt MATH identifier
0823.58011

Subjects
Primary: 58E20: Harmonic maps [See also 53C43], etc.
Secondary: 53C35: Symmetric spaces [See also 32M15, 57T15]

Citation

Ohnita, Yoshihiro. Group actions and deformations for harmonic maps into symmetric spaces. Kodai Math. J. 17 (1994), no. 3, 463--475. doi:10.2996/kmj/1138040041. https://projecteuclid.org/euclid.kmj/1138040041


Export citation

References

  • [BED-Wl] A. Bahy-El-Dien and J. C. Wood, The explicit construction of all harmonic two-spheres in Gr2(Rn), J. Reine Angew. Math. 398 (1989), 36-66.
  • [BED-W2] A. Bahy-El-Dien and J. C. Wood, The explicit construction of all harmonic two-sphere in quaternionic projective spaces, Proc. London Math. Soc. (3) 62 (1991), 202-224.
  • [BG] M. J. Bergvelt and M. A. Guest, Actions of loop groups on harmonic maps, Trans. Amer. Math Soc. 326 (1991), 861-886.
  • [Br] R. L. Bryant, Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223-261
  • [BR] F. E. Burstall and J. H. Rawnsley, Twistor theory for Riemannian symmetric spaces, Lectur Notes in Math. 1424, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1990.
  • [Cr] T. A. Crawford, The space of harmonic maps from the 2-sphere to complex projective space, preprint, McGill University, 1993
  • [EL] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. Lond. Math. Soc. 20 (1988), 385-524
  • [Ep] S. I. Epshtein, Fundamental groups of spaces of coprime polynomials, Funct. Anal. Appl. (1973), 82-83.
  • [FGKO] M. Furuta, M. A. Guest, M. Kotani and Y. Ohnita, On the fundamental group of the spac of harmonic 2-spheres in the n-sphere, Math. Z. 215 (1994), 503-518.
  • [Gl] J. F. Glazebrook, The construction of a class of harmonic maps to quaternionic projectiv spaces, J. London Math. Soc. (2) 30 (1984), 151-159.
  • [GOl] M. A. Guest and Y. Ohnita, Group actions and deformations for harmonic maps, J. Math. Soc Japan. 45 (1993), 671-704.
  • [GO2] M. A. Guest and Y. Ohnita, Loop group actions on harmonic maps and their applications, Harmonic Maps and Integrable Systems, edited by J. C. Wood and A. Fordy, Vieweg, 1994, pp 273-292.
  • [Kt] M. Kotani, Connectedness of the space of minimal 2-spheres in 52m(l), Proc. Amer. Math Soc. 120 (1994), 803-810.
  • [Lo] B. Loo, The space of harmonic maps of S2 into S*, Trans. Amer. Math. Soc. 313 (1989), 81-102
  • [Mul] M. Mukai, On connectedness of the space of harmonic 2-spheres in quaternionic projectiv spaces, Tokyo J. Math. 17 (1994), 241-252.
  • [Mu2] M. Mukai, On connectedness of the space of harmonic 2-spheres in real Grassmann manifold of 2-planes, Natur. Sci. Rep. Ochanomizu Univ. 44 (1993), 99-115.
  • [Mu3] M. Mukai, On the connectedness of spaces of harmonic 2-spheres, master thesis, Ochanomiz Univ., 1994.
  • [Pol] K. Pohlmeyer, Integrable Hamiltonian systems and interactionsthroughquadrati constraints, Commun. Math. Phys. 46 (1976), 207-221.
  • [PS] A. N. Pressley and G. B. Segal, Loop Groups, 1986, Oxford University Press
  • [Ra] J. Rawnsley, f-strucures, f-twistor spaces and harmonic maps, Geometry Seminar "Luig Bianchi "-1984, Lecture Notes in Math. 1164, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986, pp. 85-159.
  • [Sa] S. M. Salamon, Harmonic and holomorphic maps, Geometry Seminar "Luigi Bianchi" 11-1984, Lecture Notes in Math. 1164, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986, pp 161-224.
  • [Se] G. B. Segal, Loop groups and harmonic maps, Advances in Homotopy Theory, L. M. S. Lectur Notes 139, Cambridge Univ. Press, 1989, pp. 153-164.
  • [Uh] K. K. Uhlenbeck, Harmonic maps into Lie groups (Classical solutions of the chiral model), J. Differential Geom. 30 (1989), 1-50
  • [Ve] J. L. Verdier, Applications harmoniques de S2 dans 54;, Harmonic Mappings, Twistors, an -models, Advanced Series in Math. Phys. 4 (P. Gauduchon, ed.), World Scientific (Singapore), 1988, pp. 124-147.
  • [ZM] V. E. Zakharov and A. V. Mikhailov, Relativisticaly invariant two-dimensional models of fiel theory which are integrable by means of the inverse scattering problem method, Sov. Phys. JETP 47 (1978), 124-147.
  • [ZS] V. E. Zakharov and A. B. Shabat, Integration of non-linear equations of mathematical physic by the method of inverse scattering II, Funct. Anal. Appl. 13 (1979), 13-22.