Kodai Mathematical Journal

Margolis homology and Morava $K$-theory for cohomology of the dihedral group

Jun-Sim Cha

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 16, Number 2 (1993), 220-226.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138039785

Digital Object Identifier
doi:10.2996/kmj/1138039785

Mathematical Reviews number (MathSciNet)
MR1225530

Zentralblatt MATH identifier
0791.55008

Subjects
Primary: 55N22: Bordism and cobordism theories, formal group laws [See also 14L05, 19L41, 57R75, 57R77, 57R85, 57R90]
Secondary: 57R77: Complex cobordism (U- and SU-cobordism) [See also 55N22]

Citation

Cha, Jun-Sim. Margolis homology and Morava $K$-theory for cohomology of the dihedral group. Kodai Math. J. 16 (1993), no. 2, 220--226. doi:10.2996/kmj/1138039785. https://projecteuclid.org/euclid.kmj/1138039785


Export citation

References

  • [A] M. F. ATIGAH, Character andcohomology of finite groups, Publ. I. H. E. S., 9 (1961), 23-64.
  • [A-M] J. E. ADAMS AND H. R. MARGOLIS, Module over the Steenrod algebra, Topplog 10 (1971), 271-282.
  • [E] L. EVENS, On the Chern class of representation of finite groups, Trans. Amer Math. Soc, 115(1965), 180-193.
  • [H-K-R] M. HOPKINS, N. KUHN AND D. RAVENEL, Generalized group characters an complex oriented cohomology theory, Preprint.
  • [Hu] J. HUNTON, The Morava if-theories of wreath product, Math. Proc. Cambridg Phile. Soc, 107(1990), 309-318. 226JUN-SIM CHA
  • [L] G. LEWIS, The integral cohomology rings of groups of order p3, Trans. Amer Math. Soc, 132 (1968), 501-529.
  • [Lyl] I. J. LEARY, The integral cohomolgy rings of some ^-groups, Math. Proc. Cam bridge Phil. Soc, 110 (1991), 25-32.
  • [Ly2] I. J. LEARY, The cohomology of certain finite groups, Thesis at the Univ. Cam bridge 1990.
  • [R] D. C. RAVENEL, Morava -theories and finite groups, Symposium on Algebrai Topology in Honor of Jose Adem, Amer. Math. Soc. (1982), 289-292.
  • [T-Y 1] M. TEZUKA AND N. YAGITA, The varieties of the mod p cohomology ring of extra special ^-groups for an odd prime p, Math. Proc. Cambridge Phil. Soc, 94 (1983), 449-459.
  • [T-Y 2] M. TEZUKA AND N. YAGITA, Cohomology of finite groups and the Brown Peterson cohomology, Springer LNM, 1370 (1989), 396-408.
  • [T-Y 3] M. TEZUKA AND N. YAGITA, Complex /C-Theory of BSL3(Z), to appear i i-Theory.