Kodai Mathematical Journal

Self-maps of $\Sigma^k{\bf C}{\rm P}^3$ for $k\ge 1$

Kohhei Yamaguchi

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 14, Number 1 (1991), 144-162.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138039344

Digital Object Identifier
doi:10.2996/kmj/1138039344

Mathematical Reviews number (MathSciNet)
MR1099322

Zentralblatt MATH identifier
0729.55006

Subjects
Primary: 55S37: Classification of mappings
Secondary: 55Q40: Homotopy groups of spheres

Citation

Yamaguchi, Kohhei. Self-maps of $\Sigma^k{\bf C}{\rm P}^3$ for $k\ge 1$. Kodai Math. J. 14 (1991), no. 1, 144--162. doi:10.2996/kmj/1138039344. https://projecteuclid.org/euclid.kmj/1138039344


Export citation

References

  • [1] W. D. BARCUS AND M. G. BARRATT, On the homotopy classification of a fixed map, Trans. Amer. Math. Soc, 88 (1958), 57-74.
  • [2] I. M. JAMES, On the homotopy groups of certain pairs and triads, Quart. J. Math Oxford, 5 (1954), 260-270.
  • [3] I. M. JAMES, Note on cup products, Proc. Amer. Math. Soc, 8 (1957), 374-383
  • [4] I. M. JAMES, On sphere bundles over spheres, Comment. Math. Helv., 35 (1961), 126-135
  • [5] I. M. JAMES AND J. H. C. WHITEHEAD, The homotopy theory of sphere bundle over spheres (I), Proc. London Math. Soc, 4 (1954), 196-218.
  • [6] I. M. JAMES AND J. H. C. WHITEHEAD, The homotopy theory of sphere bundle over spheres (II), Proc London Math. Soc, 5 (1955), 148-166.
  • [7] C. A. MCGIBBON, Self-maps of projective spaces, Trans. Amer. Math. Soc, 27 (1982), 325-346.
  • [8] J. MUKAI, The S^transfer map and homotopy groups of suspended complex projective spaces, Math. J. Okayama Univ., 24 (1982), 179-200.
  • [9] J. MUKAI, On the stable homotopy of the real projective space of even lo dimension, Publ. RIMS. Kyoto Univ., 22 (1986), 81-95.
  • [10] S. OKA, Groups of self-equivalences of certain complexes, Hiroshima Math. J., (1972), 285-293,
  • [11] S. OKA, N. SAWASHITA AND M. SUGAWARA, On the group of self-equivalences of a mapping cone, Hiroshima Math. J., 4 (1974), 9-28.
  • [12] J. W. RUTTER, The group of homotopy self-equivalence classes of CWcomplexes, Math. Proc. Camb. Phil. Soc, 93 (1983), 275-293
  • [13] S. SASAO, The stable group of self-homotopy equivalences of sphere bundle over the sphere, Kodai Math. J., 4 (1981), 231-238.
  • [14] S. SASAO, On self-homotopy equivalences of the total spaces of a sphere bundle over a sphere, Kodai Math. J., 7 (1984), 365-381.
  • [15] A. J. SIERADSKI, Twisted self-homotopy equivalences, Pacific J. Math., 34 (1970), 789-802
  • [16] H. TODA, Composition methods in homotopy groups of spheres, Annals of Math Studies, 49 (1962), Princeton Univ. Press.
  • [17] K. YAMAGUCHI, The group of self-homotopy equivalences of S2-bundles over Si, I, Kodai Math. J., 9 (1986), 308-326
  • [18] K. YAMAGUCHI, The group of self-homotopy equivalences of S2-bundles over S4, II; Applications, Kodai Math. J., 10 (1987), 1-8
  • [19] K. YAMAGUCHI, Self-homotopy equivalences and highly connected Poincare complexes, Lecture Notes in Math., 1425(1990), 157-169, Springer-Verlag.
  • [20] G. W. WHITEHEAD, Elements of homotopy theory, Springer Verlag G. T. M., 6 (1979),