Kodai Mathematical Journal

A method to a problem of R. Nevanlinna. I.

Mitsuru Ozawa

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 8, Number 1 (1985), 14-24.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138036993

Digital Object Identifier
doi:10.2996/kmj/1138036993

Mathematical Reviews number (MathSciNet)
MR0776703

Zentralblatt MATH identifier
0574.30036

Subjects
Primary: 30D35: Distribution of values, Nevanlinna theory

Citation

Ozawa, Mitsuru. A method to a problem of R. Nevanlinna. I. Kodai Math. J. 8 (1985), no. 1, 14--24. doi:10.2996/kmj/1138036993. https://projecteuclid.org/euclid.kmj/1138036993


Export citation

References

  • [1] EDREI, A. AND W. H. J. FUCHS, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc, 93 (1959), 292-328.
  • [2] EDREI, A. AND W. H. J. FUCHS, The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (I960), 233-249.
  • [3] EDREI, A. AND W. H. J. FUCHS, Bounds for the number of deficient values of certain classes of functions, Proc. London Math. Soc, 12 (1962), 315-344.
  • [4] HELLERSTEIN, S. AND D. F. SHEA, Bounds for the deficiencies of meromorphic functions of finite order, Proc. Symposia Pure Math., 11, Entire functions and related parts analysis (1968), 214-239.
  • [5] HELLERSTEIN, S. AND J. WILLIAMSON, Entire functions with negative zeros and a problem of R. Navanlinna, J. Analyse Math., 22 (1969), 233-267.
  • [6] NEVANLINNA, R., Zur Theorie der meromorphen Funktionen, Acta Math., 46 (1925), 1-99.
  • [7] NEVANLINNA, R., Le theoreme de Picard-Borel et la theorie des functions meromorphes, Gauthier-Villars, Paris, 1929.

See also

  • Part II: Mitsuru Ozawa. A method to a problem of R. Nevanlinna. II. Kodai Math. J., Volume 8, Number 1 (1985).