Kodai Mathematical Journal

On the growth of subharmonic functions

Hideharu Ueda

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 5, Number 3 (1982), 355-359.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138036602

Digital Object Identifier
doi:10.2996/kmj/1138036602

Mathematical Reviews number (MathSciNet)
MR0684792

Zentralblatt MATH identifier
0513.31003

Subjects
Primary: 30D15: Special classes of entire functions and growth estimates
Secondary: 26A12: Rate of growth of functions, orders of infinity, slowly varying functions [See also 26A48] 31A05: Harmonic, subharmonic, superharmonic functions

Citation

Ueda, Hideharu. On the growth of subharmonic functions. Kodai Math. J. 5 (1982), no. 3, 355--359. doi:10.2996/kmj/1138036602. https://projecteuclid.org/euclid.kmj/1138036602


Export citation

References

  • [1] A. BAERNSTEIN II, A generalization of cos p theorem, Trans. Amer. Math. Soc. Vol. 193 (1974), 181-197.
  • [2] P. D. BARRY, On the growth of entire functions, Mathematical essays dedicated to A. J. Macintyre, Ohio Univ. Press (1970), 43-60.
  • [3] B. KJELLBERG, A theorem on the minimum modulus of entire functions, Math. Scand. 12 (1963), 5-11.
  • [4] H. UEDA, An extremal problem for subharmonic functions of *<l/2, Kodai Math. J. Vol. 4, No. 3 (1981), 457-479.