Kodai Mathematical Journal

Contact CR submanifolds

Kentaro Yano and Masahiro Kon

Full-text: Open access

Article information

Source
Kodai Math. J., Volume 5, Number 2 (1982), 238-252.

Dates
First available in Project Euclid: 23 January 2006

Permanent link to this document
https://projecteuclid.org/euclid.kmj/1138036553

Digital Object Identifier
doi:10.2996/kmj/1138036553

Mathematical Reviews number (MathSciNet)
MR0672522

Zentralblatt MATH identifier
0496.53038

Subjects
Primary: 53C40: Global submanifolds [See also 53B25]
Secondary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citation

Yano, Kentaro; Kon, Masahiro. Contact CR submanifolds. Kodai Math. J. 5 (1982), no. 2, 238--252. doi:10.2996/kmj/1138036553. https://projecteuclid.org/euclid.kmj/1138036553


Export citation

References

  • [1] A. BEJANCU, C7?-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc, 69 (1978), 135-142.
  • [2] A. BEJANCU AND N. PAPAGHIUC, Semi-invariant submanifolds of a Sasakian manifold, to appear.
  • [3] B. Y. CHEN, On Ci?-submanifolds of a Kaehler manifold, to appear.
  • [4] U-HANG KI, J. S. PAKAND Y. H. KIM, Generic submanifolds of complex projective spaces with parallel mean curvature vector, to appear.
  • [5] U-HANG KI AND J. S. PAK, Generic submanifolds of aneven-dimensional Euclidean space, to appear.
  • [6] J. SIMONS, Minimal varieties in emannian manifolds, Ann. of Math., 88 (1968), 62-105.
  • [7] K. YANO, On harmonic and Killing vector fields, Ann. of Math., 55 (1952), 38-45.
  • [8] K. YANO, On a structure defined by a tensor field / of type (1, 1) satisfying / 3 + / = 0 , Tensor N. S., 14 (1963), 99-109.
  • [9] K. YANO AND S. ISHIHARA, Submanifolds with parallel mean curvature vector, J. Differential Geometry, 6 (1971), 95-118.
  • [10] K. YANO AND M. KON, Anti-invariant submanifolds, Marcel Dekker, Inc., New York and Basel, 1976.
  • [11] K. YANO AND M. KON, Generic submanifolds, Annali di Mat., 123 (1980), 59-92.
  • [12] K. YANO AND M. KON, Generic submanifolds of Sasakian manifolds, Kodai Math. J., 3 (1980), 163-196.
  • [13] K. YANO AND M. KON, Differential geometry of C7?-submanifolds, Geometriae Dedicata, 10 (1981), 369-391.
  • [14] K. YANO AND M. KON, On some minimal submanifolds of an odd dimensional sphere with flat normal connection, to appear.