December 2020 Equivalence of K3 surfaces from Verra threefolds
Grzegorz Kapustka, Michał Kapustka, Riccardo Moschetti
Kyoto J. Math. 60(4): 1209-1226 (December 2020). DOI: 10.1215/21562261-2019-0059

Abstract

We study ( 2 , 2 ) divisors in P 2 × P 2 giving rise to pairs of nonisomorphic, derived equivalent, and L -equivalent K3 surfaces of degree 2 . In particular, we confirm the existence of such fourfolds as predicted recently by Kuznetsov and Shinder.

Citation

Download Citation

Grzegorz Kapustka. Michał Kapustka. Riccardo Moschetti. "Equivalence of K3 surfaces from Verra threefolds." Kyoto J. Math. 60 (4) 1209 - 1226, December 2020. https://doi.org/10.1215/21562261-2019-0059

Information

Received: 10 January 2018; Revised: 13 June 2018; Accepted: 23 July 2018; Published: December 2020
First available in Project Euclid: 24 September 2020

MathSciNet: MR4175806
Digital Object Identifier: 10.1215/21562261-2019-0059

Subjects:
Primary: 14J35 , 18F30

Keywords: cohomology lattice of hyper-Kähler manifolds , Grothendieck ring of varieties , Verra fourfolds

Rights: Copyright © 2020 Kyoto University

Vol.60 • No. 4 • December 2020
Back to Top