Kyoto Journal of Mathematics

Boundedness of maximal operator for multilinear Calderón–Zygmund operators on products of variable Hardy spaces

Jian Tan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper, we obtain boundedness of the maximal operator associated with multilinear Calderón–Zygmund singular integral operators from a product of variable Hardy spaces into variable Lebesgue spaces.

Article information

Source
Kyoto J. Math., Volume 60, Number 2 (2020), 561-574.

Dates
Received: 15 June 2017
Revised: 28 December 2017
Accepted: 9 January 2018
First available in Project Euclid: 23 January 2020

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1579748471

Digital Object Identifier
doi:10.1215/21562261-2019-0043

Mathematical Reviews number (MathSciNet)
MR4094744

Subjects
Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Secondary: 42B30: $H^p$-spaces

Keywords
multilinear Calderón–Zygmund operators variable exponent atomic decomposition Hardy space

Citation

Tan, Jian. Boundedness of maximal operator for multilinear Calderón–Zygmund operators on products of variable Hardy spaces. Kyoto J. Math. 60 (2020), no. 2, 561--574. doi:10.1215/21562261-2019-0043. https://projecteuclid.org/euclid.kjm/1579748471


Export citation

References

  • [1] R. R. Coifman, A real variable characterization of $H^{p}$, Studia Math. 51 (1974), no. 3, 269–274.
  • [2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645.
  • [3] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013.
  • [4] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, The boundedness of classical operators on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239–264.
  • [5] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238.
  • [6] D. Cruz-Uribe and L.-A. D. Wang, Variable Hardy spaces, Indiana Univ. Math. J. 63 (2014), no. 2, 447–493.
  • [7] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl. 7 (2004), no. 2, 245–253.
  • [8] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700.
  • [9] L. Diening, P. Harjulehto, P. Hästö, and M. R$\mathring{\mbox{u}}$žička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011.
  • [10] C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3–4, 137–193.
  • [11] L. Grafakos and D. He, Multilinear Calderón-Zygmund operators on Hardy spaces, II, J. Math. Anal. Appl. 416 (2014), no. 2, 511–521.
  • [12] L. Grafakos and N. Kalton, Multilinear Calderón-Zygmund operators on Hardy spaces, Collect. Math. 52 (2001), no. 2, 169–179.
  • [13] L. Grafakos, S. Nakamura, H. Nguyen, and Y. Sawano, Conditions for boundedness into Hardy spaces, Math. Nachr. 292 (2019), no. 11, 2383–2410.
  • [14] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124–164.
  • [15] K.-P. Ho, Atomic decomposition of Hardy-Morrey spaces with variable exponents, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 31–62.
  • [16] G. E. Hu and Y. Meng, Multilinear Calderón-Zygmund operator on products of Hardy spaces, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 2, 281–294.
  • [17] J. Huang and Y. Liu, The boundedness of multilinear Calderón-Zygmund operators on Hardy spaces, Proc. Indian Acad. Sci. Math. Sci. 123 (2013), no. 3, 383–392.
  • [18] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618.
  • [19] R. H. Latter, A characterization of $H^{p}(\mathbb{R}^{n})$ in terms of atoms, Studia Math. 62 (1978), no. 1, 93–101.
  • [20] W. Li, Q. Xue, and K. Yabuta, Maximal operator for multilinear Calderón-Zygmund singular integral operators on weighted Hardy spaces, J. Math. Anal. Appl. 373 (2011), no. 2, 384–392.
  • [21] Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math. 37, Cambridge Univ. Press, Cambridge, 1992.
  • [22] Y. Meyer and R. Coifman, Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge Stud. Adv. Math. 48, Cambridge Univ. Press, Cambridge, 1997.
  • [23] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665–3748.
  • [24] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, 1950.
  • [25] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), no. 1, 200–211.
  • [26] L. Pick and M. R$\mathring{\mbox{u}}$žička, An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math. 19 (2001), no. 4, 369–371.
  • [27] Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators, Integral Equations Operator Theory 77 (2013), no. 1, 123–148.
  • [28] J. Tan, Atomic decomposition of variable Hardy spaces via Littlewood-Paley-Stein theory, Ann. Funct. Anal. 9 (2018), no. 1, 87–100.
  • [29] J. Tan, Bilinear Calderón-Zygmund operators on products of variable Hardy spaces, Forum Math. 31 (2019), no. 1, 187–198.
  • [30] J. Tan, Z. Liu, and J. Zhao, On multilinear commutators in variable Lebesgue spaces, J. Math. Inequal. 11 (2017), no. 3, 715–734.
  • [31] J. Tan and J. Zhao, Fractional integrals on variable Hardy-Morrey spaces, Acta Math. Hungar. 148 (2016), no. 1, 174–190.