Kyoto Journal of Mathematics

Kolyvagin systems and Iwasawa theory of generalized Heegner cycles

Matteo Longo and Stefano Vigni

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Iwasawa theory of Heegner points on abelian varieties of GL2 type has been studied by, among others, Mazur, Perrin-Riou, Bertolini, and Howard. The purpose of this article is to describe extensions of some of their results in which abelian varieties are replaced by the Galois cohomology of Deligne’s p-adic representation attached to a modular form of even weight greater than 2. In this setting, the role of Heegner points is played by higher-dimensional Heegner-type cycles that have been recently defined by Bertolini, Darmon, and Prasanna. Our results should be compared with those obtained, via deformation-theoretic techniques, by Fouquet in the context of Hida families of modular forms.

Article information

Source
Kyoto J. Math., Volume 59, Number 3 (2019), 717-746.

Dates
Received: 11 May 2016
Revised: 13 May 2017
Accepted: 18 May 2017
First available in Project Euclid: 12 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1562896995

Digital Object Identifier
doi:10.1215/21562261-2019-0005

Mathematical Reviews number (MathSciNet)
MR3990184

Zentralblatt MATH identifier
07108009

Subjects
Primary: 11R23: Iwasawa theory
Secondary: 11F11: Holomorphic modular forms of integral weight

Keywords
Iwasawa theory modular forms generalized Heegner cycles

Citation

Longo, Matteo; Vigni, Stefano. Kolyvagin systems and Iwasawa theory of generalized Heegner cycles. Kyoto J. Math. 59 (2019), no. 3, 717--746. doi:10.1215/21562261-2019-0005. https://projecteuclid.org/euclid.kjm/1562896995


Export citation

References

  • [1] P. N. Balister and S. Howson, Note on Nakayama’s lemma for compact $\Lambda $-modules, Asian J. Math. 1 (1997), no. 2, 224–229.
  • [2] M. Bertolini, Selmer groups and Heegner points in anticyclotomic $\mathbf{Z}_{p}$-extensions, Compos. Math. 99 (1995), no. 2, 153–182.
  • [3] M. Bertolini, Iwasawa theory for elliptic curves over imaginary quadratic fields, J. Théor. Nombres Bordeaux 13 (2001), no. 1, 1–25.
  • [4] M. Bertolini and H. Darmon, Heegner points on Mumford–Tate curves, Invent. Math. 126 (1996), no. 3, 413–456.
  • [5] M. Bertolini, H. Darmon, and K. Prasanna, Generalized Heegner cycles and $p$-adic Rankin $L$-series, with appendix “Kuga–Sato schemes” by B. Conrad, Duke Math. J. 162 (2013), no. 6, 1033–1148.
  • [6] S. Bloch and K. Kato, “$L$-functions and Tamagawa numbers of motives” in The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser Boston, Boston, 1990, 333–400.
  • [7] A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), no. 3, 442–470.
  • [8] F. Castella and M.-L. Hsieh, Heegner cycles and $p$-adic ${L}$-functions, Math. Ann. 370 (2018), no. 1–2, 567–628.
  • [9] P. Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148 (1998), no. 2, 485–571.
  • [10] C. Cornut, Mazur’s conjecture on higher Heegner points, Invent. Math. 148 (2002), no. 3, 495–523.
  • [11] P. Deligne, “Formes modulaires et représentations $\ell $-adiques” in Séminaire Bourbaki, Vol. 1968/69, no. 355, Lecture Notes in Math. 175, Springer, Berlin, 1971, 139–172.
  • [12] O. Fouquet, Dihedral Iwasawa theory of nearly ordinary quaternionic automorphic forms, Compos. Math. 149 (2013), no. 3, 356–416.
  • [13] B. Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439–1472.
  • [14] B. Howard, Iwasawa theory of Heegner points on abelian varieties of $\mathrm{GL_{2}} $ type, Duke Math. J. 124 (2004), no. 1, 1–45.
  • [15] B. Howard, Special cohomology classes for modular Galois representations, J. Number Theory 117 (2006), no. 2, 406–438.
  • [16] B. Howard, Variation of Heegner points in Hida families, Invent. Math. 167 (2007), no. 1, 91–128.
  • [17] V. A. Kolyvagin, “Euler systems” in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser Boston, Boston, 1990, 435–483.
  • [18] S. Lang and H. Trotter, Frobenius Distributions in $\mathrm{GL}_{2}$-Extensions, Lecture Notes in Math. 504, Springer, Berlin, 1976.
  • [19] M. Longo and S. Vigni, A refined Beilinson–Bloch conjecture for motives of modular forms, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7301–7342.
  • [20] B. Mazur, “Modular curves and arithmetic” in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, 185–211.
  • [21] B. Mazur and K. Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), no. 799.
  • [22] M. R. Murty and V. K. Murty, “A variant of the Lang–Trotter conjecture” in Number Theory, Analysis and Geometry, Springer, New York, 2012, 461–474.
  • [23] M. R. Murty, V. K. Murty, and N. Saradha, Modular forms and the Chebotarev density theorem, Amer. J. Math. 110 (1988), no. 2, 253–281.
  • [24] J. Nekovář, Kolyvagin’s method for Chow groups of Kuga–Sato varieties, Invent. Math. 107 (1992), no. 1, 99–125.
  • [25] J. Nekovář, “$p$-adic Abel–Jacobi maps and $p$-adic heights” in The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), CRM Proc. Lecture Notes 24, Amer. Math. Soc., Providence, 2000, 367–379.
  • [26] J. Nekovář and A. Plater, On the parity of ranks of Selmer groups, Asian J. Math. 4 (2000), no. 2, 437–497.
  • [27] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of Number Fields, Grundlehren Math. Wiss. 323, Springer, Berlin, 2000.
  • [28] T. Ochiai, Control theorem for Bloch–Kato’s Selmer groups of $p$-adic representations, J. Number Theory 82 (2000), no. 1, 69–90.
  • [29] B. Perrin-Riou, Fonctions $L$ $p$-adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399–456.
  • [30] K. A. Ribet, “Galois representations attached to eigenforms with Nebentypus” in Modular Functions of One Variable, V (Bonn, 1976), Lecture Notes in Math. 601, Springer, Berlin, 1977, 17–51.
  • [31] K. A. Ribet, On $l$-adic representations attached to modular forms, II, Glasg. Math. J. 27 (1985), 185–194.
  • [32] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci. 54 (1981), 323–401.
  • [33] X. Wan, Heegner point Kolyvagin system and Iwasawa Main Conjecture, preprint, 2014.