Kyoto Journal of Mathematics

Spin networks, Ehrhart quasipolynomials, and combinatorics of dormant indigenous bundles

Yasuhiro Wakabayashi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

It follows from work of S. Mochizuki, F. Liu, and B. Osserman that there is a relationship between Ehrhart’s theory concerning rational polytopes and the geometry of the moduli stack classifying dormant indigenous bundles on a proper hyperbolic curve in positive characteristic. This relationship was established by considering the (finite) cardinality of the set consisting of certain colorings on a 3-regular graph called spin networks. In the present article, we recall the correspondences between spin networks, lattice points of rational polytopes, and dormant indigenous bundles and present some identities and explicit computations of invariants associated with the objects involved.

Article information

Source
Kyoto J. Math., Volume 59, Number 3 (2019), 649-684.

Dates
Received: 6 November 2014
Revised: 5 April 2017
Accepted: 15 May 2017
First available in Project Euclid: 2 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1562032985

Digital Object Identifier
doi:10.1215/21562261-2019-0020

Mathematical Reviews number (MathSciNet)
MR3990181

Zentralblatt MATH identifier
07108006

Subjects
Primary: 14H10: Families, moduli (algebraic)
Secondary: 52B05: Combinatorial properties (number of faces, shortest paths, etc.) [See also 05Cxx]

Keywords
p-adic Teichmüller theory indigenous bundle p-curvature spin network Ehrhart polynomial

Citation

Wakabayashi, Yasuhiro. Spin networks, Ehrhart quasipolynomials, and combinatorics of dormant indigenous bundles. Kyoto J. Math. 59 (2019), no. 3, 649--684. doi:10.1215/21562261-2019-0020. https://projecteuclid.org/euclid.kjm/1562032985


Export citation

References

  • [1] E. Ehrhart, Sur les polyèdres rationnels homothétiques à $n$ dimensions, C. R. Math. Acad. Sci. Paris 254 (1962), 616–618.
  • [2] E. Ehrhart, Sur un problème de géométrie diophantienne linéaire, I: Polyèdres et réseaux, J. Reine Angew. Math. 226 (1967), 1–29.
  • [3] E. Ehrhart, Sur un problème de géométrie diophantienne linéaire, II: Systèmes diophantiens linéaires, J. Reine Angew. Math. 227 (1967), 25–49.
  • [4] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math. 168, Springer, New York, 1996.
  • [5] R. C. Gunning, Special coordinate coverings of Riemann surfaces, Math. Ann. 170 (1967), 67–86.
  • [6] A. Hatcher, P. Lochak, and L. Schneps, On the Teichmüller tower of mapping class groups, J. Reine Angew. Math. 521 (2000), 1–24.
  • [7] A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), no. 3, 221–237.
  • [8] K. Joshi, S. Ramanan, E. Z. Xia, and J. K. Yu, On vector bundles destabilized by Frobenius pull-back, Compos. Math. 142 (2006), no. 3, 616–630.
  • [9] K. Kato, “Logarithmic structures of Fontaine-Illusie” in Algebraic Analysis, Geometry, and Number Theory (Baltimore, 1988), Johns Hopkins Univ. Press, Baltimore, 1989, 191–224.
  • [10] H. Lange and C. Pauly, On Frobenius-destabilized rank-$2$ vector bundles over curves, Comment. Math. Helv. 83 (2008), no. 1, 179–209.
  • [11] F. Liu and B. Osserman, Mochizuki’s indigenous bundles and Ehrhart polynomials, J. Algebraic Combin. 23, (2006), no. 2, 125–136.
  • [12] D. Margalit, Automorphisms of the pants complex, Duke Math. J. 121 (2004), no. 3, 457–479.
  • [13] S. Mochizuki, A theory of ordinary $p$-adic curves, Publ. Res. Inst. Math. Sci. 32 (1996), no. 6, 957–1151.
  • [14] S. Mochizuki, Foundations of $p$-adic Teichmüller Theory, AMS/IP Stud. Adv. Math. 11, Amer. Math. Soc., Providence, 1999.
  • [15] A. Ogus, $F$-crystals, Griffiths transversality, and the Hodge decomposition, Astérisque 221, Soc. Math. France, Paris, 1994.
  • [16] B. Osserman, Mochizuki’s crys-stable bundles: A lexicon and applications, Publ. Res. Inst. Math. Sci. 43 (2007), no. 1, 95–119.
  • [17] B. Osserman, Frobenius-unstable bundles and $p$-curvature, Trans. Amer. Math. Soc. 360 (2008), no. 1, 273–305.
  • [18] R. Penrose, “Angular momentum: An approach to combinatorial space-time” in Quantum Theory and Beyond, Res. Notes Math., Cambridge Univ. Press, Cambridge, 1971, 151–180.
  • [19] R. Penrose, “Applications of negative dimensional tensors” in Combinatorial Mathematics and Its Applications (Oxford, 1969), Academic Press, London, 1971, 221–244.
  • [20] D. Singh, A. M. Ibrahim, T. Yohanna, and J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math. 37 (2007), no. 2, 73–92.
  • [21] L. Smolin, “The physics of spin networks” in The Geometric Universe (Oxford, 1996), Oxford Univ. Press, Oxford, 1998, 291–304.
  • [22] R. P. Stanley, Combinatorial reciprocity theorems, Adv. Math. 14 (1974), 194–253.
  • [23] Y. Wakabayashi, An explicit formula for the generic number of dormant indigenous bundles, Publ. Res. Inst. Math. Sci. 50 (2014), no. 3, 383–409.
  • [24] Wikipedia, Spin network entry, http://en.wikipedia.org/wiki/Spin_network (accessed 26February 2013).
  • [25] Wikipedia, Ehrhart polynomial entry, http://en.wikipedia.org/wiki/Ehrhart_polynomial (accessed 12 March 2013).
  • [26] Wikipedia, Graph entry, http://en.wikipedia.org/wiki/Graph_(mathematics) (accessed 21 May 2013).
  • [27] D. Zagier, “Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula” in Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Ramat Gan, Israel, 1996, 445–462.