Kyoto Journal of Mathematics

The balanced tensor product of module categories

Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The balanced tensor product MAN of two modules over an algebra A is the vector space corepresenting A-balanced bilinear maps out of the product M×N. The balanced tensor product MCN of two module categories over a monoidal linear category C is the linear category corepresenting C-balanced right-exact bilinear functors out of the product category M×N. We show that the balanced tensor product can be realized as a category of bimodule objects in C, provided the monoidal linear category is finite and rigid.

Article information

Source
Kyoto J. Math., Volume 59, Number 1 (2019), 167-179.

Dates
Received: 1 February 2016
Revised: 5 September 2016
Accepted: 12 January 2017
First available in Project Euclid: 3 October 2018

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1538532153

Digital Object Identifier
doi:10.1215/21562261-2018-0006

Mathematical Reviews number (MathSciNet)
MR3934626

Zentralblatt MATH identifier
07081625

Subjects
Primary: 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23]
Secondary: 13C60: Module categories

Keywords
tensor category module category Deligne tensor product Kelly tensor product

Citation

Douglas, Christopher L.; Schommer-Pries, Christopher; Snyder, Noah. The balanced tensor product of module categories. Kyoto J. Math. 59 (2019), no. 1, 167--179. doi:10.1215/21562261-2018-0006. https://projecteuclid.org/euclid.kjm/1538532153


Export citation

References

  • [1] B. Bakalov and A. Kirillov, Jr., Lectures on Tensor Categories and Modular Functors, Univ. Lecture Ser. 21, Amer. Math. Soc., Providence, 2001.
  • [2] M. Barr and C. Wells, Toposes, Triples and Theories, Grundlehren Math. Wiss. 278, Springer, New York, 1985.
  • [3] D. Ben-Zvi, A. Brochier, and D. Jordan, Integrating quantum groups over surfaces: quantum character varieties and topological field theory, to appear in J. Topol., preprint, arXiv:1501.04652v5 [math.QA].
  • [4] P. Deligne, “Catégories tannakiennes” in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser Boston, Boston, 1990, 111–195.
  • [5] A. Davydov and D. Nikshych, The Picard crossed module of a braided tensor category, Algebra Number Theory 7 (2013), 1365–1403.
  • [6] A. Davydov, D. Nikshych, and V. Ostrik, On the structure of the Witt group of braided fusion categories, Selecta Math. (N.S.) 19 (2013), 237–269.
  • [7] C. L. Douglas, C. Schommer-Pries, and N. Snyder, Dualizable tensor categories, preprint, arXiv:1312.7188v2 [math.QA].
  • [8] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, Lecture notes for MIT course 18.769, http://www-math.mit.edu/~etingof/tenscat1.pdf.
  • [9] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories, Math. Surveys Monogr. 205, Amer. Math. Soc., Providence, 2015.
  • [10] P. Etingof, D. Nikshych, and V. Ostrik, An analogue of Radford’s $S^{4}$ formula for finite tensor categories, Int. Math. Res. Not. 2004, no. 54, 2915–2933.
  • [11] P. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), 581–642.
  • [12] P. Etingof, D. Nikshych, and V. Ostrik, Fusion categories and homotopy theory, with an appendix by E. Meir, Quantum Topol. 1 (2010), 209–273.
  • [13] P. Etingof and V. Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), 627–654, 782–783.
  • [14] J. Fuchs, C. Schweigert, and A. Valentino, Bicategories for boundary conditions and for surface defects in 3-d TFT, Comm. Math. Phys. 321 (2013), 543–575.
  • [15] J. Greenough, Relative centers and tensor products of tensor and braided fusion categories, J. Algebra 388 (2013), 374–396.
  • [16] P. Grossman and N. Snyder, Quantum subgroups of the Haagerup fusion categories, Comm. Math. Phys. 311 (2012), 617–643.
  • [17] P. Grossman and N. Snyder, The Brauer-Picard group of the Asaeda-Haagerup fusion categories, Trans. Amer. Math. Soc. 368, no. 4 (2016), 2289–2331.
  • [18] T. Johnson-Freyd and C. Scheimbauer, (Op)lax natural transformations, twisted quantum field theories, and the “even higher” Morita categories, preprint, arXiv:1502.06526v3 [math.CT].
  • [19] D. Jordan and E. Larson, On the classification of certain fusion categories, J. Noncommut. Geom. 3 (2009), 481–499.
  • [20] G. M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Note Ser. 64, Cambridge Univ. Press, New York, 1982.
  • [21] G. M. Kelly, Structures defined by finite limits in the enriched context, I, Cahiers Topologie Géom. Différentielle 23 (1982), 3–42.
  • [22] I. López Franco, Tensor products of finitely cocomplete and abelian categories, J. Algebra 396 (2013), 207–219.
  • [23] M. Müger, From subfactors to categories and topology, I: Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra 180 (2003), 81–157.
  • [24] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), 177–206.
  • [25] D. Tambara, A duality for modules over monoidal categories of representations of semisimple Hopf algebras, J. Algebra 241 (2001), 515–547.