Kyoto Journal of Mathematics
- Kyoto J. Math.
- Volume 57, Number 1 (2017), 165-183.
Hyperbolic span and pseudoconvexity
Sachiko Hamano, Masakazu Shiba, and Hiroshi Yamaguchi
Abstract
A planar open Riemann surface admits the Schiffer span to a point . M. Shiba showed that an open Riemann surface of genus one admits the hyperbolic span . We establish the variation formulas of for the deforming open Riemann surface of genus one with complex parameter in a disk of center , and we show that if the total space is a two-dimensional Stein manifold, then is subharmonic on . In particular, is harmonic on if and only if is biholomorphic to the product .
Article information
Source
Kyoto J. Math., Volume 57, Number 1 (2017), 165-183.
Dates
Received: 4 December 2015
Revised: 12 February 2016
Accepted: 15 February 2016
First available in Project Euclid: 11 March 2017
Permanent link to this document
https://projecteuclid.org/euclid.kjm/1489201235
Digital Object Identifier
doi:10.1215/21562261-3759558
Mathematical Reviews number (MathSciNet)
MR3621784
Zentralblatt MATH identifier
1371.32008
Subjects
Primary: 32Txx: Pseudoconvex domains 32G15: Moduli of Riemann surfaces, Teichmüller theory [See also 14H15, 30Fxx]
Secondary: 32E10: Stein spaces, Stein manifolds 30Fxx: Riemann surfaces
Keywords
Closings of an open torus pseudoconvex family of open tori variational formula for the modulus (sub)harmonity of the hyperbolic span
Citation
Hamano, Sachiko; Shiba, Masakazu; Yamaguchi, Hiroshi. Hyperbolic span and pseudoconvexity. Kyoto J. Math. 57 (2017), no. 1, 165--183. doi:10.1215/21562261-3759558. https://projecteuclid.org/euclid.kjm/1489201235