Kyoto Journal of Mathematics
- Kyoto J. Math.
- Volume 57, Number 1 (2017), 147-164.
Boundary limits of monotone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric space
Takao Ohno and Tetsu Shimomura
Abstract
Our aim in this article is to deal with boundary limits of monotone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric space.
Article information
Source
Kyoto J. Math., Volume 57, Number 1 (2017), 147-164.
Dates
Received: 31 July 2015
Revised: 7 December 2015
Accepted: 1 February 2016
First available in Project Euclid: 11 March 2017
Permanent link to this document
https://projecteuclid.org/euclid.kjm/1489201234
Digital Object Identifier
doi:10.1215/21562261-3759549
Mathematical Reviews number (MathSciNet)
MR3621783
Zentralblatt MATH identifier
1376.30045
Subjects
Primary: 31B25: Boundary behavior
Secondary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems
Keywords
monotone Sobolev functions Lindelöf theorem Musielak–Orlicz spaces variable exponent
Citation
Ohno, Takao; Shimomura, Tetsu. Boundary limits of monotone Sobolev functions in Musielak–Orlicz spaces on uniform domains in a metric space. Kyoto J. Math. 57 (2017), no. 1, 147--164. doi:10.1215/21562261-3759549. https://projecteuclid.org/euclid.kjm/1489201234