Open Access
June 2016 Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces
Pavel Dimovski, Stevan Pilipović, Bojan Prangoski, Jasson Vindas
Kyoto J. Math. 56(2): 401-440 (June 2016). DOI: 10.1215/21562261-3478916

Abstract

We introduce and study a number of new spaces of ultradifferentiable functions and ultradistributions and we apply our results to the study of the convolution of ultradistributions. The spaces of convolutors O'C*(Rd) for tempered ultradistributions are analyzed via the duality with respect to the test function spaces OC*(Rd) introduced in this article. We also study ultradistribution spaces associated to translation-invariant Banach spaces of tempered ultradistributions and use their properties to provide a full characterization of the general convolution of Roumieu ultradistributions via the space of integrable ultradistributions. We show that the convolution of two Roumieu ultradistributions T,SD'{Mp}(Rd) exists if and only if (φSˇ)TD'L1{Mp}(Rd) for every φD{Mp}(Rd).

Citation

Download Citation

Pavel Dimovski. Stevan Pilipović. Bojan Prangoski. Jasson Vindas. "Convolution of ultradistributions and ultradistribution spaces associated to translation-invariant Banach spaces." Kyoto J. Math. 56 (2) 401 - 440, June 2016. https://doi.org/10.1215/21562261-3478916

Information

Received: 3 September 2014; Revised: 17 February 2015; Accepted: 8 April 2015; Published: June 2016
First available in Project Euclid: 10 May 2016

zbMATH: 1352.46039
MathSciNet: MR3500846
Digital Object Identifier: 10.1215/21562261-3478916

Subjects:
Primary: 46F05
Secondary: 46E10 , 46F10 , 46H25

Keywords: Beurling algebra , convolution of ultradistributions , parametrix method , translation-invariant Banach space of tempered ultradistributions , ultratempered convolutors

Rights: Copyright © 2016 Kyoto University

Vol.56 • No. 2 • June 2016
Back to Top