Kyoto Journal of Mathematics

On a smooth compactification of PSL(n,C)/T

Indranil Biswas, S. Senthamarai Kannan, and D. S. Nagaraj

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let T be a maximal torus of PSL(n,C). For n4, we construct a smooth compactification of PSL(n,C)/T as a geometric invariant theoretic quotient of the wonderful compactification PSL(n,C)¯ for a suitable choice of T-linearized ample line bundle on PSL(n,C)¯. We also prove that the connected component, containing the identity element, of the automorphism group of this compactification of PSL(n,C)/T is PSL(n,C) itself.

Article information

Kyoto J. Math., Volume 56, Number 1 (2016), 165-175.

Received: 26 August 2012
Revised: 16 January 2015
Accepted: 16 January 2015
First available in Project Euclid: 15 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14F17: Vanishing theorems [See also 32L20]

Wonderful compactification GIT quotients automorphism group Frobenius splitting


Biswas, Indranil; Kannan, S. Senthamarai; Nagaraj, D. S. On a smooth compactification of $\operatorname{PSL}(n,\mathbb{C})/T$. Kyoto J. Math. 56 (2016), no. 1, 165--175. doi:10.1215/21562261-3445183.

Export citation


  • [Br] M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), 61–99.
  • [DP] C. De Concini and C. Procesi, “Complete symmetric varieties” in Invariant Theory (Montecatini, 1982), Lecture Notes in Math. 996, Springer, Berlin, 1983, 1–44.
  • [Fu] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • [Gr] A. Grothendieck, Local Cohomology, Lecture Notes in Math. 41, Springer, Berlin, 1967.
  • [Ha] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, Berlin, 1977.
  • [Hu1] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Grad. Texts in Math. 9, Springer, Berlin, 1972.
  • [Hu2] J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, Berlin, 1975.
  • [Ka1] S. S. Kannan, Torus quotients of homogeneous spaces, II, Proc. Indian Acad. Sci. Math. Sci. 109 (1999), 23–39.
  • [Ka2] S. S. Kannan, “GIT related problems of the flag variety for the action of a maximal torus” in Groups of Exceptional Type, Coxeter Groups and Related Geometries, Springer Proc. Math. Stat. 82, Springer, New Delhi, 2014, 189–203.
  • [KKV] F. Knop, H. Kraft, and T. Vust, “The Picard group of a $G$-variety” in Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem. 13, Birkhäuser, Basel, 1989, 77–87.
  • [MO] H. Matsumura and F. Oort, Representability of group functors, and automorphisms of algebraic schemes, Invent. Math. 4 (1967), 1–25.
  • [MR] V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27–40.
  • [Mu] D. Mumford, The Red Book of Varieties and Schemes, 2nd expanded ed., Lecture Notes in Math. 1358, Springer, Berlin, 1999.
  • [MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory, 3rd ed., Ergeb. Math. Grenzgeb. (3) 34, Springer, Berlin, 1994.
  • [Se] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math. (2) 95 (1972), 511–556.
  • [St] E. Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), 165–171.