Kyoto Journal of Mathematics

On Thompson’s p-complement theorems for saturated fusion systems

Jon González-Sánchez, Albert Ruiz, and Antonio Viruel

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this short note we prove that a saturated fusion system admitting some special type of automorphism is nilpotent. This generalizes classical results by J. G. Thompson.

Article information

Kyoto J. Math., Volume 55, Number 3 (2015), 617-626.

Received: 29 January 2014
Revised: 8 July 2014
Accepted: 8 July 2014
First available in Project Euclid: 9 September 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20D20: Sylow subgroups, Sylow properties, $\pi$-groups, $\pi$-structure 55R35: Classifying spaces of groups and $H$-spaces

John G. Thompson Frobenius kernel $p$-nilpotency criterion


González-Sánchez, Jon; Ruiz, Albert; Viruel, Antonio. On Thompson’s $p$ -complement theorems for saturated fusion systems. Kyoto J. Math. 55 (2015), no. 3, 617--626. doi:10.1215/21562261-3089100.

Export citation


  • [1] C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Subgroup families controlling $p$-local finite groups, Proc. London Math. Soc. (3) 91 (2005), 325–354.
  • [2] C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779–856.
  • [3] J. Cantarero, J. Scherer, and A. Viruel, Nilpotent $p$-local finite groups, Ark. Mat. 52 (2014), 203–225.
  • [4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups. Oxford Univ. Press, Eynsham, 1985.
  • [5] D. Craven, Thompson $p$-nilpotence and fusion systems, preprint,
  • [6] A. Díaz, A. Glesser, N. Mazza, and S. Park, Glauberman’s and Thompson’s theorems for fusion systems, Proc. Amer. Math. Soc. 137 (2009), 495–503.
  • [7] A. Díaz, A. Glesser, S. Park, and R. Stancu, Tate’s and Yoshida’s theorems on control of transfer for fusion systems, J. Lond. Math. Soc. (2) 84 (2011), 475–494.
  • [8] D. Gorenstein, Finite Groups, Harper & Row, New York, 1968.
  • [9] R. Kessar and M. Linckelmann, $ZJ$-theorems for fusion systems, Trans. Amer. Math. Soc. 360 (2008), 3093–3106.
  • [10] B. Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Cambridge Philos. Soc. 137 (2004), 321–347.
  • [11] S. Onofrei and R. Stancu, A characteristic subgroup for fusion systems, J. Algebra 322 (2009), 1705–1718.
  • [12] A. Ruiz and A. Viruel, The classification of $p$-local finite groups over the extraspecial group of order $p^{3}$ and exponent $p$, Math. Z. 248 (2004), 45–65.
  • [13] J. G. Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Natl. Acad. Sci. USA 45 (1959), 578–581.
  • [14] J. G. Thompson, Normal $p$-complements for finite groups, Math. Z. 72 (1959/60), 332–354.
  • [15] J. G. Thompson, Normal $p$-complements for finite groups, J. Algebra 1 (1964), 43–46.