Kyoto Journal of Mathematics

Invariants of wreath products and subgroups of S 6

Ming-chang Kang, Baoshan Wang, and Jian Zhou

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let G be a subgroup of S 6 , the symmetric group of degree 6. For any field k , G acts naturally on the rational function field k ( x 1 , , x 6 ) via k -automorphisms defined by σ x i = x σ ( i ) for any σ G and any 1 i 6 . We prove the following theorem. The fixed field k ( x 1 , , x 6 ) G is rational (i.e., purely transcendental) over k , except possibly when G is isomorphic to PSL 2 ( F 5 ) , PGL 2 ( F 5 ) , or A 6 . When G is isomorphic to PSL 2 ( F 5 ) or PGL 2 ( F 5 ) , then C ( x 1 , , x 6 ) G is C -rational and k ( x 1 , , x 6 ) G is stably k -rational for any field k . The invariant theory of wreath products will be investigated also.

Article information

Source
Kyoto J. Math., Volume 55, Number 2 (2015), 257-279.

Dates
Received: 18 September 2013
Revised: 10 February 2014
Accepted: 20 February 2014
First available in Project Euclid: 11 June 2015

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1433982755

Digital Object Identifier
doi:10.1215/21562261-2871749

Mathematical Reviews number (MathSciNet)
MR3356073

Zentralblatt MATH identifier
06457494

Subjects
Primary: 13A50: Actions of groups on commutative rings; invariant theory [See also 14L24]
Secondary: 14E08: Rationality questions [See also 14M20]

Keywords
Noether’s problem rationality problem wreath products

Citation

Kang, Ming-chang; Wang, Baoshan; Zhou, Jian. Invariants of wreath products and subgroups of $S_{6}$. Kyoto J. Math. 55 (2015), no. 2, 257--279. doi:10.1215/21562261-2871749. https://projecteuclid.org/euclid.kjm/1433982755


Export citation

References

  • [AHK] H. Ahmad, M. Hajja, and M.-C. Kang, Rationality of some projective linear actions, J. Algebra 228 (2000), 643–658.
  • [CHK] H. Chu, S.-J. Hu, and M.-C. Kang, Noether’s problem for dihedral 2-groups, Comment. Math. Helv. 79 (2004), 147–159.
  • [Di] J. Dixmier, “Sur les invariants du groupe symétrique dans certaines représentations, II” in Topics in Invariant Theory (Paris, 1989/1990), Lecture Notes in Math. 1478, Springer, Berlin, 1991, 1–34.
  • [DM] J. D. Dixon and B. Mortimer, Permutation Groups, Grad. Texts in Math. 163, Springer, New York, 1996.
  • [EM] S. Endô and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7–26.
  • [Fl] P. Fleischmann, The Noether bound in invariant theory of finite groups, Adv. Math. 156 (2000), 23–32.
  • [Fo] J. Fogarty, On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5–7.
  • [FH] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, Berlin, 1991.
  • [GMS] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological Invariants in Galois Cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., Providence, 2003.
  • [Ga] W. Gaschütz, Fixkörper von $p$-Automorphismengruppen reintranszendener Körpererweiterungen von $p$-Charakteristik, Math. Z. 71 (1959), 466–468.
  • [Ha] M. Hajja, Rationality of finite groups of monomial automorphisms of $k(x,y)$, J. Algebra 109 (1987), 46–51.
  • [HK1] M. Hajja and M.-C. Kang, Finite group actions on rational function fields, J. Algebra 149 (1992), 139–154.
  • [HK2] M. Hajja and M.-C. Kang, Three-dimensional purely monomial group actions, J. Algebra 170 (1994), 805–860.
  • [HK3] M. Hajja and M.-C. Kang, Some actions of symmetric groups, J. Algebra 177 (1995), 511–535.
  • [HHR] K.-I. Hashimoto, A. Hoshi, and Y. Rikuna, Noether’s problem and $\mathbb{Q}$-generic polynomials for the normalizer of the $8$-cycle in $S_{8}$ and its subgroups, Math. Comp. 77 (2008), 1153–1183.
  • [HT1] K.-I. Hashimoto and H. Tsunogai, Generic polynomials over $\mathbf{Q}$ with two parameters for the transitive permutation groups of degree five, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), 142–145.
  • [HT2] K.-I. Hashimoto and H. Tsunogai, “Noether’s problem for transitive permutation groups of degree $6$” in Galois-Teichmuller Theory and Arithmetic Geometry, Adv. Stud. Pure Math. 63, Math. Soc. Japan, Tokyo, 2012, 189–220.
  • [Ho] A. Hoshi, Multiplicative quadratic forms on algebraic varieties and Noether’s problem for meta-abelian groups, Ph.D. dissertation, Waseda University, Tokyo, 2005, available at http://dspace.wul.waseda.ac.jp/dspace/handle/2065/3004 (accessed 11, March 2015).
  • [HR] A. Hoshi and Y. Rikuna, Rationality problem of three-dimensional purely monomial group actions: The last case, Math. Comp. 77 (2008), 1823–1829.
  • [Is] I. M. Isaacs, Finite Group Theory, Grad. Stud. Math. 92, Amer. Math. Soc., Providence, 2008.
  • [Ka1] M.-C. Kang, Rationality problem of $\operatorname{GL}_{4}$ group actions, Adv. Math. 181 (2004), 321–352.
  • [Ka2] M.-C. Kang, Noether’s problem for dihedral 2-groups, II, Pacific J. Math. 222 (2005), 301–316.
  • [KP] M.-C. Kang and B. Plans, Reduction theorems for Noether’s problem, Proc. Amer. Math. Soc. 137 (2009), 1867–1874.
  • [KW] M.-C. Kang and B. Wang, Rational invariants for subgroups of $S_{5}$ and $S_{7}$, J. Algebra 413 (2014), 345–363.
  • [Ku] H. Kuniyoshi, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 65–67.
  • [Kuy1] W. Kuyk, On the inversion problem of Galois theory (in Dutch), Ph.D. dissertation, Vrije Universiteit te Amsterdam, Amsterdam, 1960.
  • [Kuy2] W. Kuyk, On a theorem of E. Noether, Indag. Math. 26 (1964), 32–39.
  • [Le] H. W. Lenstra Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325.
  • [Ma] T. Maeda, Noether’s problem for $A_{5}$, J. Algebra 125 (1989), 418–430.
  • [No] E. Noether, Rationale Funktionenkörper, Jber. Deutsch. Math.-Verein. 22 (1913), 316–319.
  • [Ro] D. J. S. Robinson, A course in the theory of groups, Grad. Texts in Math. 80, Springer, Berlin, 1982.
  • [Sa] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43 (1982), 250–283.
  • [Sh] N. I. Shepherd-Barron, Invariant theory for $S_{5}$ and the rationality of $M_{6}$, Compos. Math. 70 (1989), 13–25.
  • [Sm] L. Smith, Polynomial Invariants of Finite Groups, Res. Notes Math. 6, Peters, Wellesley, Mass., 1995.
  • [Sw] R. G. Swan, “Noether’s problem in Galois theory” in Emmy Noether in Bryn Mawr, Springer, Berlin, 1983, 21–40.
  • [Ts] H. Tsunogai, Noether’s problem for Sylow subgroups of symmetric groups and its application (in Japanese), Sūrikaisekikenkyūsho Kūkyūroku 1451 (2005), 265–274.
  • [WZ] B. Wang and J. Zhou, Rationality problem for transitive subgroups of $S_{8}$, preprint, arXiv:1402.1675v1 [math.AG].
  • [Za] O. Zariski, On Castelnuovo’s criterion of rationality $p_{a}=P_{2}=0$ of an algebraic surface, Illinois J. Math. 2 (1958), 303–315.
  • [Zh] J. Zhou, Rationality for subgroups of $S_{6}$, to appear in Comm. Algebra, preprint, arXiv:1308.0409v2 [math.AG].