Kyoto Journal of Mathematics

Bohr–Jessen process and functional limit theorem

Satoshi Takanobu

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

The Bohr–Jessen limit theorem states that for each σ>12, there exists an asymptotic probability distribution of logζ(σ+-1). Here ζ() is the Riemann zeta function, and logζ() is a primitive function of ζ'/ζ on some simply connected domain of C. In this paper, we generalize this limit theorem to a functional limit theorem and show a similar limit theorem for a continuous process {logζ(σ+-1)}σ>1/2, which we call the Bohr–Jessen functional limit theorem.

Article information

Source
Kyoto J. Math., Volume 54, Number 2 (2014), 401-426.

Dates
First available in Project Euclid: 2 June 2014

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1401741284

Digital Object Identifier
doi:10.1215/21562261-2642440

Mathematical Reviews number (MathSciNet)
MR3215573

Zentralblatt MATH identifier
1302.60060

Subjects
Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 11M06: $\zeta (s)$ and $L(s, \chi)$

Citation

Takanobu, Satoshi. Bohr–Jessen process and functional limit theorem. Kyoto J. Math. 54 (2014), no. 2, 401--426. doi:10.1215/21562261-2642440. https://projecteuclid.org/euclid.kjm/1401741284


Export citation

References

  • [1] H. Bohr, Zur Theorie der Riemann’schen Zetafunktion im Kritischen Streifen (in German), Acta Math. 40 (1915), 67–100.
  • [2] H. Bohr and R. Courant, Neue Anwendungen der Theorie der Diophantischen Approximationen auf die Riemannsche Zetafunktion (in German), J. Reine Angew. Math. 144 (1914), 249–274.
  • [3] H. Bohr and B. Jessen, Über die Wertverteilung der Riemannschen Zetafunktion, Erste Mitteilung (in German), Acta Math. 54 (1930), 1–35; Zweite Mitteilung (in German), Acta Math. 58 (1932), 1–55.
  • [4] V. Borchsenius and B. Jessen, Mean motions and values of the Riemann zeta function, Acta Math. 80 (1948), 97–166.
  • [5] K. Itô, Introduction to Probability Theory, Cambridge Univ. Press, Cambridge, 1984.
  • [6] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc., 38 (1935), no. 1, 48–88.
  • [7] Y. Kawada, Number Theory: From Classical Number Theory to Class Field Theory (in Japanese), Iwanami, Tokyo, 2010.
  • [8] S. Kotani, Measure and Probability (in Japanese), Iwanami, Tokyo, 2005.
  • [9] A. Laurinchikas, A limit theorem for Dirichlet $L$-series (in Russian), Mat. Zametki 25 (1979), 481–485, 635; English translation in Math. Notes 25 (1979), 251–253.
  • [10] A. Laurinchikas, “Limit theorems for the Riemann zeta-function in the complex space” in Probability Theory and Mathematical Statistics, II (Vilnius, 1989), Mokslas, Vilnius, Lithuania, 1990, 59–69.
  • [11] A. Laurinchikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996.
  • [12] K. Matsumoto, “Value-distribution of zeta-functions” in Analytic Number Theory (Tokyo, 1988), Lecture Notes in Math. 1434, Springer, Berlin, 1990, 178–187.
  • [13] K. Matsumoto, Asymptotic probability measures of zeta-functions of algebraic number fields, J. Number Theory 40 (1992), 187–210.
  • [14] K. Matsumoto, Riemann Zeta Function (in Japanese), Asakura, Tokyo, 2005.
  • [15] T. Murayama and S. Takanobu, The behavior of the limit distribution in Bohr-Jessen limit theorem as $\sigma\searrow\frac{1}{2}$ — asymptotic expansion of probability densities (in Japanese), lecture at “MSJ Spring Meeting 2011,” Tokyo, 2011.
  • [16] H. Sato, From Measure to Probability — Introduction to Probability Theory (in Japanese), Kyoritsu, Tokyo, 1994.
  • [17] D. W. Stroock, Probability Theory: An Analytic View, rev. ed., Cambridge Univ. Press, Cambridge, 1999.
  • [18] S. Takanobu, Bohr-Jessen Limit Theorem, Revisited, Math. Soc. Japan Mem. 31, Math. Soc. Japan, Tokyo, 2013.
  • [19] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math. 46, Cambridge Univ. Press, Cambridge, 1995.