Open Access
Fall 2013 Mapping properties of the discrete fractional maximal operator in metric measure spaces
Toni Heikkinen, Juha Kinnunen, Juho Nuutinen, Heli Tuominen
Kyoto J. Math. 53(3): 693-712 (Fall 2013). DOI: 10.1215/21562261-2265932

Abstract

This work studies boundedness properties of the fractional maximal operator on metric measure spaces under standard assumptions on the measure. The main motivation is to show that the fractional maximal operator has similar smoothing and mapping properties as the Riesz potential. Instead of the usual fractional maximal operator, we also consider a so-called discrete maximal operator which has better regularity. We study the boundedness of the discrete fractional maximal operator in Sobolev, Hölder, Morrey, and Campanato spaces. We also prove a version of the Coifman– Rochberg lemma for the fractional maximal function.

Citation

Download Citation

Toni Heikkinen. Juha Kinnunen. Juho Nuutinen. Heli Tuominen. "Mapping properties of the discrete fractional maximal operator in metric measure spaces." Kyoto J. Math. 53 (3) 693 - 712, Fall 2013. https://doi.org/10.1215/21562261-2265932

Information

Published: Fall 2013
First available in Project Euclid: 19 August 2013

zbMATH: 1280.42012
MathSciNet: MR3102566
Digital Object Identifier: 10.1215/21562261-2265932

Subjects:
Primary: 35J60 , 42B25 , 46E35

Rights: Copyright © 2013 Kyoto University

Vol.53 • No. 3 • Fall 2013
Back to Top