Kyoto Journal of Mathematics

Perverse coherent sheaves and Fourier–Mukai transforms on surfaces, I

Kōta Yoshioka

Full-text: Open access

Abstract

We study perverse coherent sheaves on the resolution of rational double points. As examples, we consider rational double points on 2-dimensional moduli spaces of stable sheaves on K3 and elliptic surfaces. Then we show that perverse coherent sheaves appear in the theory of Fourier–Mukai transforms. As an application, we generalize the Fourier–Mukai duality for K3 surfaces to our situation.

Article information

Source
Kyoto J. Math., Volume 53, Number 2 (2013), 261-344.

Dates
First available in Project Euclid: 20 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1369071232

Digital Object Identifier
doi:10.1215/21562261-2081234

Mathematical Reviews number (MathSciNet)
MR3079307

Zentralblatt MATH identifier
1274.14022

Subjects
Primary: 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}

Citation

Yoshioka, Kōta. Perverse coherent sheaves and Fourier–Mukai transforms on surfaces, I. Kyoto J. Math. 53 (2013), no. 2, 261--344. doi:10.1215/21562261-2081234. https://projecteuclid.org/euclid.kjm/1369071232


Export citation

References

  • [BBH] C. Bartocci, U. Bruzzo, and D. Hernández Ruipérez, A Fourier–Mukai transform for stable bundles on $K3$ surfaces, J. Reine Angew. Math. 486 (1997), 1–16.
  • [BS] A. Borel and J.-P. Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97–136.
  • [Br1] T. Bridgeland, Fourier–Mukai transforms for elliptic surfaces, J. Reine Angew. Math. 498 (1998), 115–133.
  • [Br2] T. Bridgeland, Equivalences of triangulated categories and Fourier–Mukai transforms, Bull. London Math. Soc. 31 (1999), 25–34.
  • [Br3] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), 613-632.
  • [Br4] T. Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), 241–291.
  • [E] H. Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985), 63–71.
  • [F1] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968), 511–521.
  • [F2] J. Fogarty, Truncated Hilbert functors, J. Reine Angew. Math. 234 (1969) 65–88.
  • [H] D. Huybrechts, Derived and abelian equivalence of $K3$ surfaces, J. Algebraic Geom. 17 (2008), 375–400.
  • [Is1] A. Ishii, On the moduli of reflexive sheaves on a surface with rational double points, Math. Ann. 294 (1992), 125–150.
  • [K] A. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), 515–530.
  • [Ko] K. Kodaira, On compact analytic surfaces, II, Ann. of Math. (2) 77 (1963), 563–626.
  • [MW] K. Matsuki and R. Wentworth, Mumford–Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Internat. J. Math. 8 (1997), 97–148.
  • [Mu1] S. Mukai, Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175.
  • [Mu2] S. Mukai, “On the moduli space of bundles on $K3$ surfaces, I” in Vector bundles on Algebraic Varieties (Bombay, 1984), Tata Inst. Fund Res. Stud. Math. 11, Tata Inst. Fund Res., Bombay, 1987, 341–413.
  • [Mu3] S. Mukai, “Duality of polarized $K3$ surfaces” in New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, Cambridge, 1999, 311–326.
  • [N1] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J. 76 (1994), 365–416.
  • [N2] H. Nakajima, Sheaves on ALE spaces and quiver varieties, Mosc. Math. J. 7 (2007), 699–722.
  • [NY1] H. Nakajima and K. Yoshioka, “Perverse coherent sheaves on blow-up, I: A quiver description” in Exploring New Structures and Natural Constructions in Mathematical Physics, Adv. Stud. Pure Math. 61, Math. Soc. Japan, Tokyo, 2011, 349–386.
  • [NY2] H. Nakajima and K. Yoshioka, Perverse coherent sheaves on blow-up, II: Wall-crossing and Betti numbers formula, J. Algebraic Geom. 20 (2011), 47–100.
  • [NY3] H. Nakajima and K. Yoshioka, Perverse coherent shaves on blow-up, III: Blow-up formula from wall-crossing, Kyoto J. of Math. 51 (2011), 263–335.
  • [OY] N. Onishi and K. Yoshioka, Singularities on the $2$-dimensional moduli spaces of stable sheaves on $K3$ surfaces, Internat. J. Math. 14 (2003), 837–864.
  • [O] D. Orlov, Equivalences of derived categories and $K3$ surfaces, J. Math. Sci. (New York) 84 (1997), 1361–1381.
  • [ST] P. Seidel and R. P. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37–108.
  • [S] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety, I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129.
  • [T] Y. Toda, Hilbert schemes of points via McKay correspondences, preprint, arXiv:math/0508555v1 [math.AG].
  • [VB] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), 423–455.
  • [Y1] K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), 817–884.
  • [Y2] K. Yoshioka, Twisted stability and Fourier–Mukai transform, I, Compositio Math. 138 (2003), 261–288.
  • [Y3] K. Yoshioka, Twisted stability and Fourier–Mukai transform, II, Manuscripta Math. 110 (2003), 433–465.
  • [Y4] K. Yoshioka, “Moduli of twisted sheaves on a projective variety” in Moduli Spaces and Arithmetic Geometry, Adv. Stud. Pure Math. 45, Math. Soc. Japan, Tokyo, 2006, 1–30.
  • [Y5] K. Yoshioka, Stability and the Fourier–Mukai transform, II, Compos. Math. 145 (2009), 112–142.
  • [Y6] K. Yoshioka, “An action of a Lie algebra on the homology groups of moduli spaces of stable sheaves” in Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo, 2007), Adv. Stud. Pure Math. 58, Math. Soc. Japan, Tokyo, 2010, 403–459.
  • [Y7] K. Yoshioka, Perverse coherent sheaves and Fourier–Mukai transforms on surfaces, II, preprint.