Kyoto Journal of Mathematics

On G/N-Hilb of N-Hilb

Akira Ishii, Yukari Ito, and Álvaro Nolla de Celis

Full-text: Open access

Abstract

In this paper we consider the iterated G-equivariant Hilbert scheme G/N-Hilb(N-Hilb) and prove that G/N-Hilb(N-Hilb(C3)) is a crepant resolution of C3/G isomorphic to the moduli space Mθ(Q) of θ-stable representations of the McKay quiver Q for certain stability condition θ. We provide several explicit examples to illustrate this construction. We also consider the problem of when G/N-Hilb(N-Hilb) is isomorphic to G-Hilb showing the fact that these spaces are most of the times different.

Article information

Source
Kyoto J. Math., Volume 53, Number 1 (2013), 91-130.

Dates
First available in Project Euclid: 25 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1364218042

Digital Object Identifier
doi:10.1215/21562261-1966080

Mathematical Reviews number (MathSciNet)
MR3049308

Zentralblatt MATH identifier
1267.14022

Subjects
Primary: 14E16: McKay correspondence
Secondary: 14C05: Parametrization (Chow and Hilbert schemes) 14D20: Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13} 14E15: Global theory and resolution of singularities [See also 14B05, 32S20, 32S45] 16G20: Representations of quivers and partially ordered sets

Citation

Ishii, Akira; Ito, Yukari; Nolla de Celis, Álvaro. On $G/N$ -Hilb of $N$ -Hilb. Kyoto J. Math. 53 (2013), no. 1, 91--130. doi:10.1215/21562261-1966080. https://projecteuclid.org/euclid.kjm/1364218042


Export citation

References

  • [BKR] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535–554.
  • [BSW] R. Bocklandt, T. Schedler, and M. Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), 1501–1522.
  • [Cra1] A. Craw, An explicit construction of the McKay correspondence for $A$-$\mathrm{Hilb}\mathbb{C}^{3}$, J. Algebra 285 (2005), 682–705.
  • [Cra2] A. Craw, The McKay correspondence and representations of the McKay quiver, Ph.D. dissertation, University of Warwick, Warwick, UK, 2001.
  • [CI] A. Craw and A. Ishii, Flops of $G$-Hilb and equivalences of derived categories by variation of GIT quotient. Duke Math. J. 124 (2004), 259–307.
  • [CR] A. Craw and M. Reid, “How to calculate $A$-Hilb $\mathbb{C}^{3}$” in Geometry of Toric Varieties, Sémin. Congr. 6, Soc. Math. France, Montrouge, 2002, 129–154.
  • [Dem] L. Demonet, Skew group algebras of path algebras and preprojective algebras, J. Algebra 323 (2010), 1052–1059.
  • [GNS] Y. Gomi, I. Nakamura, and K. Shinoda, Coinvariant algebras of finite subgroups of $\operatorname{SL} (3,\mathbf{C})$, Canad. J. Math. 56 (2004), 495–528.
  • [Ish] A. Ishii, “Representation moduli of the McKay quiver for finite Abelian subgroups of $\mathrm{SL}(3,\mathbb{C})$” in Strings and Geometry, Clay Math. Proc. 3, Amer. Math. Soc., Providence, 2004, 227–237.
  • [IU] A. Ishii and K. Ueda, The special McKay correspondence and exceptional collection, preprint, arXiv:1104.2381v1 [math.AG]
  • [Ito1] Y. Ito, Crepant resolution of trihedral singularities, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 131–136.
  • [Ito2] Y. Ito, Crepant resolution of trihedral singularities and the orbifold Euler characteristic, Internat. J. Math. 6 (1995), 33–43.
  • [IN] Y. Ito and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topology 39 (2000), 1155–1191.
  • [Kin] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), 515–530.
  • [Nak] I. Nakamura, Hilbert schemes of Abelian group orbits, J. Algebraic Geom. 10 (2001), 757–779.
  • [NdC] Á. Nolla de Celis, Dihedral ${G}$-Hilb via representations of the McKay quiver, Proc. Japan Acad. Ser. A 88 (2012), 78–83.
  • [NdCS] Á. Nolla de Celis and Y. Sekiya, Flops and mutations for crepant resolutions of polyhedral singularities, preprint, arXiv:1108.2352v1 [math.AG]
  • [Ser] J.-P. Serre, Linear Representations of Finite Groups, Grad. Texts in Math. 42, Springer, New York, 1977.
  • [Tha] M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), 691–723.
  • [YY] S. S.-T. Yau and Y. Yu, Gorenstein quotient singularities in dimension three, Mem. Amer. Math. Soc. 105 (1993), no. 505.