Kyoto Journal of Mathematics

The canonical module of a Cox ring

Mitsuyasu Hashimoto and Kazuhiko Kurano

Full-text: Open access

Abstract

In this paper, we describe the graded canonical module of a Noetherian multisection ring of a normal projective variety. In particular, in the case of the Cox ring, we prove that the graded canonical module is a graded free module of rank one with the shift of degree KX. We give two kinds of proofs. The first one utilizes the equivariant twisted inverse functor developed by the first author. The second proof is down-to-earth, which avoids the twisted inverse functor, but some additional assumptions are required in this proof.

Article information

Source
Kyoto J. Math., Volume 51, Number 4 (2011), 855-874.

Dates
First available in Project Euclid: 10 November 2011

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1320936735

Digital Object Identifier
doi:10.1215/21562261-1424884

Mathematical Reviews number (MathSciNet)
MR2854155

Zentralblatt MATH identifier
1246.14012

Subjects
Primary: 14C20: Divisors, linear systems, invertible sheaves
Secondary: 13C20: Class groups [See also 11R29]

Citation

Hashimoto, Mitsuyasu; Kurano, Kazuhiko. The canonical module of a Cox ring. Kyoto J. Math. 51 (2011), no. 4, 855--874. doi:10.1215/21562261-1424884. https://projecteuclid.org/euclid.kjm/1320936735


Export citation

References

  • [1] D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17–50.
  • [2] E. J. Elizondo, K. Kurano, and K.-i. Watanabe, The total coordinate ring of a normal projective variety, J. Algebra 276 (2004), 625–637.
  • [3] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • [4] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179–213.
  • [5] S. Goto and K. Watanabe, On graded rings, II (Zn-graded rings), Tokyo J. Math. 1 (1978), 237–261.
  • [6] M. Hashimoto, “Equivariant twisted inverses” in Foundations of Grothendieck Duality for Diagrams of Schemes, Lecture Notes in Math. 1960, Springer, Berlin, 2009, 261–478.
  • [7] M. Hashimoto and M. Ohtani, “Local cohomology on diagrams of schemes” in Special Volume in Honor of Melvin Hochster, Michigan Math. J. 57, Univ. Michigan Math. Dept., Ann Arbor, 2008, 383–425.
  • [8] M. Hashimoto and M. Ohtani, Equivariant Matlis and the local duality, J. Algebra 324 (2010), 1447–1470.
  • [9] Y. Kamoi, Noetherian rings graded by an abelian group, Tokyo J. Math. 18 (1995), 31–48.
  • [10] O. N. Popov, The Cox ring of a Del Pezzo surface has rational singularities, preprint, arXiv:math/0402154v1 [math.AG].
  • [11] K.-i. Watanabe, Some remarks concerning Demazure’s construction of normal graded rings, Nagoya Math. J. 83 (1981), 203–211.