Kyoto Journal of Mathematics

Quantum continuous gl: Tensor products of Fock modules and Wn-characters

B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin

Full-text: Open access

Abstract

We construct a family of irreducible representations of the quantum continuous gl whose characters coincide with the characters of representations in the minimal models of the Wn-algebras of gln type. In particular, we obtain a simple combinatorial model for all representations of the Wn-algebras appearing in the minimal models in terms of n interrelating partitions.

Article information

Source
Kyoto J. Math. Volume 51, Number 2 (2011), 365-392.

Dates
First available in Project Euclid: 22 April 2011

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1303494507

Digital Object Identifier
doi:10.1215/21562261-1214384

Mathematical Reviews number (MathSciNet)
MR2793272

Subjects
Primary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23] 81R10: Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, $W$-algebras and other current algebras and their representations [See also 17B65, 17B67, 22E65, 22E67, 22E70] 05E10: Combinatorial aspects of representation theory [See also 20C30]

Citation

Feigin, B.; Feigin, E.; Jimbo, M.; Miwa, T.; Mukhin, E. Quantum continuous gl ∞ : Tensor products of Fock modules and W n -characters. Kyoto J. Math. 51 (2011), no. 2, 365--392. doi:10.1215/21562261-1214384. https://projecteuclid.org/euclid.kjm/1303494507


Export citation

References

  • [ABB+] G. E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester, and G. X. Viennot, Partitions with prescribed hook differences, European J. Combin. 8 (1987), 341–350.
  • [BS] I. Burban and O. Schiffmann, On the Hall algebra of an elliptic curve, I, preprint, arXiv:math/0505148v2 [math.AG]
  • [DI] J. Ding and K. Iohara, Generalization of Drinfeld quantum affine algebras, Lett. Math. Phys. 41 (1997), 181–193.
  • [FFJ+] B. Feigin, E. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Quantum continuous $\mathfrak{gl}_{\infty}$: Semi-infinite construction of representations, Kyoto J. Math. 51 (2011), 337–364.
  • [FHH+] B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, and S. Yanagida, A commutative algebra on degenerate $\mathbb{CP}^{1}$ and Macdonald polynomials, J. Math. Phys. 50 (2009), no. 095215.
  • [FJL+] B. Feigin, M. Jimbo, S. Loktev, T. Miwa, and E. Mukhin, Bosonic formulas for (k, l)-admissible partitions, Ramanujan J. 7 (2003), 485–517.
  • [FJMM] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin, Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials, Int. Math. Res. Not. 2003, no. 18, 1015–1034.
  • [FJ+1] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, and Y. Takeyama, Fermionic formulas for (k, 3)-admissible configurations, Publ. Res. Inst. Math. Sci. 40 (2004), 125–162.
  • [FJ+2] B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, and Y. Takeyama, Particle content of the (k, 3)-configurations, Publ. Res. Inst. Math. Sci. 40 (2004), 163–220.
  • [FT] B. Feigin and A. Tsymbaliuk, Heisenberg action in the equivariant K-theory of Hilbert schemes via shuffle algebra, preprint, arXiv:0904.1679v1 [math.RT]
  • [FKW] E. Frenkel, V. Kac, and M. Wakimoto, Characters and fusion rules for W-algebras via quantized Drinfel’d-Sokolov reduction, Comm. Math. Phys. 147 (1992), 295–328.
  • [K] M. Kasatani, Subrepresentations in the polynomial representation of the double affine Hecke algebra of type GLn at tk+1qr−1 = 1, Int. Math. Res. Not. 2005, no. 28, 1717–1742.
  • [M] I. Macdonald, Symmetric Functions and Hall Polynomials, with contributions by A. Zelevinsky, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995.
  • [S] O. Schiffmann, On the Hall algebra of an elliptic curve, II, preprint, arXiv:0508553v2 [math.RT]
  • [ScV1] O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, preprint, arXiv:0802.4001v1 [math.QA]
  • [ScV2] O. Schiffmann and E. Vasserot, The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of $\mathbb{A}^{2}$, preprint, arXiv:0905.2555v2 [math. QA]
  • [SV] A. N. Sergeev and A. P. Veselov, Generalised discriminants, deformed Calogero-Moser-Sutherland operators and super-Jack polynomials, Adv. Math. 192 (2005), 341–375.