Kyoto Journal of Mathematics

Poisson deformations of affine symplectic varieties, II

Yoshinori Namikawa

Full-text: Open access

Abstract

This article is a continuation of previous work, which has the same title. Let Y be an affine symplectic variety with a C-action with positive weights, and let π:XY be its crepant resolution. Then π induces a natural map PDef(X)PDef(Y) of Kuranishi spaces for the Poisson deformations of X and Y. In Part I, we proved that PDef(X) and PDef(Y) are both nonsingular, and this map is a finite surjective map. In this article (Part II), we prove that it is a Galois covering. Markman already obtained a similar result in the compact case, which was a motivation for this article. As an application, we construct explicitly the universal Poisson deformation of the normalization O˜ of a nilpotent orbit closure O˜ in a complex simple Lie algebra when O˜ has a crepant resolution.

Article information

Source
Kyoto J. Math., Volume 50, Number 4 (2010), 727-752.

Dates
First available in Project Euclid: 29 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1291041216

Digital Object Identifier
doi:10.1215/0023608X-2010-012

Mathematical Reviews number (MathSciNet)
MR2740692

Zentralblatt MATH identifier
1211.14040

Subjects
Primary: 14J 14E 32G
Secondary: 14B 32J

Citation

Namikawa, Yoshinori. Poisson deformations of affine symplectic varieties, II. Kyoto J. Math. 50 (2010), no. 4, 727--752. doi:10.1215/0023608X-2010-012. https://projecteuclid.org/euclid.kjm/1291041216


Export citation

References

  • [Be] A. Beauville, Variétés Kähleriennes dont la première classes de Chern est nulle, J. Differential Geom. 18 (1983), 755–782.
  • [Ca1] R. W. Carter, Simple Groups of Lie Type, Wiley, London, 1972.
  • [Ca2] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge Stud. Adv. Math. 96, Cambridge Univ. Press, Cambridge, 2005.
  • [CG] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997.
  • [GK] V. Ginzburg and D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), 1–57.
  • [Ho] R. B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. London Math. Soc. (2) 21 (1980), 62–80.
  • [Ka] D. Kaledin, Symplectic singularities from the Poisson point of view, J. Reine Angew. Math. 600 (2006), 135–156.
  • [KM] J. Kollár and S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), 533–703.
  • [Lo] E. Looijenga, Isolated Singular Points on Complete Intersections, London Math. Soc. Lecture Note Ser. 77, Cambridge Univ. Press, Cambridge, 1984.
  • [Ma] E. Markman, Modular Galois covers associated to symplectic resolutions of singularities, preprint, arXiv:0807.3502v4 [math.AG]
  • [Na1] Y. Namikawa, Deformation theory of singular symplectic n-folds, Math. Ann. 319 (2001), 597–623.
  • [Na2] Y. Namikawa, “Birational geometry of symplectic resolutions of nilpotent orbits” in Moduli Spaces and Arithmetic Geometry (Kyoto, 2004), Adv. Stud. Pure Math. 45, Math. Soc. Japan, Tokyo, 2006, 75–116.
  • [Na3] Y. Namikawa, On deformations of Q-factorial symplectic varieties, J. Reine Angew. Math. 599 (2006), 97–110.
  • [Na4] Y. Namikawa, Birational geometry and deformations of nilpotent orbits, Duke Math. J. 143 (2008), 375–405.
  • [Na5] Y. Namikawa, Flops and Poisson deformations of symplectic varieties, Publ. Res. Inst. Math. Sci. 44 (2008), 259–314.
  • [Na6] Y. Namikawa, Poisson deformations of affine symplectic varieties, to appear in Duke Math. J. 156 (2011), preprint.v7 [math.AG]
  • [Na7] Y. Namikawa, Extensions of 2-forms and symplectic varieties, J. Reine Angew. Math. 539 (2001), 123–147.
  • [S1] P. Slodowy, Four Lectures on Simple Groups and Singularities, Comm. Math. Inst. Rijksuniversiteit Utrecht 11, Rijksuniversiteit Utrecht, Utrecht, Netherlands, 1980.
  • [S2] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Math. 815, Springer, Berlin, 1980.
  • [Ya] H. Yamada, Lie group theoretical construction of period mapping, Math. Z. 220 (1995), 231–255.