Kyoto Journal of Mathematics

Finite generation of the log canonical ring in dimension four

Osamu Fujino

Full-text: Open access

Abstract

We treat two different topics on the log minimal model program, especially for four-dimensional log canonical pairs:

 (a) finite generation of the log canonical ring in dimension four,

 (b) abundance theorem for irregular fourfolds.

We obtain (a) as a direct consequence of the existence of four-dimensional log minimal models by using Fukuda’s theorem on the four-dimensional log abundance conjecture. We can prove (b) only by using traditional arguments. More precisely, we prove the abundance conjecture for irregular (n+1)-folds on the assumption that the minimal model conjecture and the abundance conjecture hold in dimension n.

Article information

Source
Kyoto J. Math., Volume 50, Number 4 (2010), 671-684.

Dates
First available in Project Euclid: 29 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1291041214

Digital Object Identifier
doi:10.1215/0023608X-2010-010

Mathematical Reviews number (MathSciNet)
MR2740690

Zentralblatt MATH identifier
1210.14020

Subjects
Primary: 14J35: $4$-folds
Secondary: 14E30: Minimal model program (Mori theory, extremal rays)

Citation

Fujino, Osamu. Finite generation of the log canonical ring in dimension four. Kyoto J. Math. 50 (2010), no. 4, 671--684. doi:10.1215/0023608X-2010-010. https://projecteuclid.org/euclid.kjm/1291041214


Export citation

References

  • [A] F. Ambro, The moduli b-divisor of an lc-trivial fibration, Composito Math. 141 (2005), 385–403.
  • [BS] M. Beltrametti and A. Sommese, The Adjunction Theory of Complex Projective Varieties, de Gruyter Exp. Math. 16, de Gruyter, Berlin, 1995.
  • [B] C. Birkar, On existence of log minimal models, Compositio Math. 146 (2010), 919–928.
  • [BCHM] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405–468.
  • [BDPP] S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, preprint.v1 [math.AG]
  • [F1] O. Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), 513–532.
  • [F2] O. Fujino, “What is log terminal?” in Flips for 3-Folds and 4-Folds, Oxford Lecture Ser. Math. Appl. 35, Oxford Univ. Press, Oxford, 2007, 49–62.
  • [F3] O. Fujino, Base point free theorems—saturation, b-divisors, and canonical bundle formula, preprint.v2 [math.AG]
  • [F4] O. Fujino, Fundamental theorems for the log minimal model program, to appear in Publ. Res. Inst. Math. Sci., preprint, arXiv:0909.4445v2 [math.AG]
  • [F5] O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint, arXiv:0907.1506v1 [math.AG]
  • [F6] O. Fujino, On Kawamata’s theorem, to appear in Classification of Algebraic Varieties, Schiermonnikoog, Netherlands, May 10–15, 2009, preprint, arXiv:0910.1156v1 [math.AG]
  • [Ft] T. Fujita, Fractionally logarithmic canonical rings of surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), 685–696.
  • [Fk] S. Fukuda, On numerically effective log canonical divisors, Int. J. Math. Math. Sci. 30 (2002), 521–531.
  • [HM] C. D. Hacon and J. McKernan, “Extension theorems and the existence of flips” in Flips for 3-Folds and 4-Folds, Oxford Lecture Ser. Math. Appl. 35, Oxford Univ. Press, Oxford, 2007, 76–110.
  • [K1] Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43 (1981), 253–276.
  • [K2] Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1–46.
  • [K3] Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), 567–588.
  • [K4] Y. Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), 609–611.
  • [KMM] Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem” in Algebraic Geometry (Sendai, Japan, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 283–360.
  • [KeMM1] S. Keel, K. Matsuki, and J. McKernan, Log abundance theorem for threefolds, Duke Math. J. 75 (1994), 99–119.
  • [KeMM2] S. Keel, K. Matsuki, and J. McKernan, Corrections to “Log abundance theorem for threefolds,” Duke Math. J. 122 (2004), 625–630.
  • [Ko] J. Kollár, et al., Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Montrouge, 1992.
  • [KM] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge, 1998.
  • [L] R. Lazarsfeld, Positivity in Algebraic Geometry, I. Classical Setting: Line Bundles and Linear Series, Ergeb. Math. Grenzgeb. (3) 48, Springer, Berlin, 2004.
  • [R] M. Reid, Projective morphisms according to Kawamata, preprint, 1983.
  • [S1] V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 82–219; English translation in Proc. Steklov Inst. Math. 240 (2003), 75–213.
  • [S2] V. V. Shokurov, “Letters of a bi-rationalist, VII: Ordered termination” in Multidimensional Algebraic Geometry, Tr. Mat. Inst. Steklova 264, MAIK Nauka/Interperiodica, Moscow, 2009, 184–208.
  • [U] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, notes written in collaboration with P. Cherenack, Lecture Notes in Math. 439. Springer, Berlin, 1975.