Kyoto Journal of Mathematics

3-graded decompositions of exceptional Lie algebras g and group realizations of gev, g0 and ged, III: G=E8

Toshikazu Miyashita and Ichiro Yokota

Full-text: Open access

Abstract

In the articles [4] and [7], we completed the determination of group realizations gev and g0 of 2-graded decompositions g=g-2g-1g0g1g2 of exceptional Lie algebras g for the universal exceptional Lie groups. In the present article, which is a continuation of [5] and [8], we determine group realizations of subalgebras gev, g0 and ged of 3-graded decompositions of exceptional Lie algebras g for the universal exceptional Lie groups of type E8.

Article information

Source
Kyoto J. Math., Volume 50, Number 2 (2010), 281-305.

Dates
First available in Project Euclid: 7 May 2010

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1273236817

Digital Object Identifier
doi:10.1215/0023608X-2009-014

Mathematical Reviews number (MathSciNet)
MR2666659

Zentralblatt MATH identifier
1221.17013

Subjects
Primary: 20G41: Exceptional groups

Citation

Miyashita, Toshikazu; Yokota, Ichiro. $3$ -graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}_{ev}$ , $\mathfrak{g}_{0}$ and $\mathfrak{g}_{ed}$ , III: $G=E_{8}$. Kyoto J. Math. 50 (2010), no. 2, 281--305. doi:10.1215/0023608X-2009-014. https://projecteuclid.org/euclid.kjm/1273236817


Export citation

References

  • [1] S. Gomyo, Realization of maximal subgroups of rank 8 of simply connected compact simple Lie groups of type E8, Tsukuba J. Math. 21 (1997), 595–616.
  • [2] S. Gomyo, Realizations of subgroups of type D8 of connected exceptional simple Lie groups of type E8, Tsukuba J. Math. 23 (1999), 585–615.
  • [3] M. Hara, Real semisimple graded Lie algebras of the third kind (in Japanese), master’s thesis, Shinshu University, Nagano, Japan, 2000.
  • [4] T. Miyashita and I. Yokota, 2-graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}$ev, $\mathfrak{g}$0, III: G=E8, Japan. J. Math. (N.S.) 26 (2000), 31–50.
  • [5] T. Miyashita and I. Yokota, 3-graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}$ev, $\mathfrak{g}$0 and $\mathfrak{g}$ed, II: G=E7, case 1, J. Math. Kyoto Univ. 46 (2006), 383–413; cases 2, 3, and 4 46 (2006), 805–832; case 5, 47 (2007), 121–128.
  • [6] I. Yokota, Realization of involutive automorphisms σ and Gσ of exceptional linear Lie groups G, II: G=E7, Tsukuba J. Math. 14 (1990), 379–404.
  • [7] I. Yokota, 2-graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}$ev, $\mathfrak{g}$0, I: G=G2, F4, E6, Japan. J. Math. (N.S.) 24 (1998), 257–296; II: G=E7, 25 (1999), 154–179.
  • [8] I. Yokota, 3-graded decompositions of exceptional Lie algebras $\mathfrak{g}$ and group realizations of $\mathfrak{g}$ev, $\mathfrak{g}$0 and $\mathfrak{g}$ed, I: G=G2, F4, E6, J. Math. Kyoto Univ. 41 (2001), 449–475.